1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/time/time.v
2021-01-22 23:24:48 +01:00

447 lines
10 KiB
V

// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module time
#include <time.h>
const (
days_string = 'MonTueWedThuFriSatSun'
month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
months_string = 'JanFebMarAprMayJunJulAugSepOctNovDec'
// The unsigned zero year for internal calculations.
// Must be 1 mod 400, and times before it will not compute correctly,
// but otherwise can be changed at will.
absolute_zero_year = i64(-292277022399) // as i64
seconds_per_minute = 60
seconds_per_hour = 60 * seconds_per_minute
seconds_per_day = 24 * seconds_per_hour
seconds_per_week = 7 * seconds_per_day
days_per_400_years = 365 * 400 + 97
days_per_100_years = 365 * 100 + 24
days_per_4_years = 365 * 4 + 1
days_before = [
0,
31,
31 + 28,
31 + 28 + 31,
31 + 28 + 31 + 30,
31 + 28 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
]
long_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
)
// Time contains various time units for a point in time.
pub struct Time {
pub:
year int
month int
day int
hour int
minute int
second int
microsecond int
unix u64
}
// FormatDelimiter contains different time formats.
pub enum FormatTime {
hhmm12
hhmm24
hhmmss12
hhmmss24
hhmmss24_milli
hhmmss24_micro
no_time
}
// FormatDelimiter contains different date formats.
pub enum FormatDate {
ddmmyy
ddmmyyyy
mmddyy
mmddyyyy
mmmd
mmmdd
mmmddyyyy
no_date
yyyymmdd
}
// FormatDelimiter contains different time/date delimiters.
pub enum FormatDelimiter {
dot
hyphen
slash
space
no_delimiter
}
// C.timeval represents a C time value.
pub struct C.timeval {
tv_sec u64
tv_usec u64
}
fn C.localtime(t &C.time_t) &C.tm
fn C.time(t &C.time_t) C.time_t
// now returns current local time.
pub fn now() Time {
$if macos {
return darwin_now()
}
$if windows {
return win_now()
}
$if solaris {
return solaris_now()
}
$if linux || android {
return linux_now()
}
// defaults to most common feature, the microsecond precision is not available
// in this API call
t := C.time(0)
now := C.localtime(&t)
return convert_ctime(now, 0)
}
// utc returns the current UTC time.
pub fn utc() Time {
$if macos {
return darwin_utc()
}
$if windows {
return win_utc()
}
$if solaris {
return solaris_utc()
}
$if linux || android {
return linux_utc()
}
// defaults to most common feature, the microsecond precision is not available
// in this API call
t := C.time(0)
_ = C.time(&t)
return unix2(int(t), 0)
}
// smonth returns month name.
pub fn (t Time) smonth() string {
if t.month <= 0 || t.month > 12 {
return '---'
}
i := t.month - 1
return months_string[i * 3..(i + 1) * 3]
}
// new_time returns a time struct with calculated Unix time.
pub fn new_time(t Time) Time {
if t.unix != 0 {
return t
}
tt := C.tm{
tm_sec: t.second
tm_min: t.minute
tm_hour: t.hour
tm_mday: t.day
tm_mon: t.month - 1
tm_year: t.year - 1900
}
utime := u64(make_unix_time(tt))
return Time{
...t
unix: utime
}
}
// unix_time returns Unix time.
[inline]
pub fn (t Time) unix_time() int {
return int(t.unix)
}
// unix_time_milli returns Unix time with millisecond resolution.
[inline]
pub fn (t Time) unix_time_milli() u64 {
return t.unix * 1000 + u64(t.microsecond / 1000)
}
// add returns a new time that duration is added
pub fn (t Time) add(d Duration) Time {
microseconds := i64(t.unix) * 1000 * 1000 + t.microsecond + d.microseconds()
unix := microseconds / (1000 * 1000)
micro := microseconds % (1000 * 1000)
return unix2(int(unix), int(micro))
}
// add_seconds returns a new time struct with an added number of seconds.
pub fn (t Time) add_seconds(seconds int) Time {
return t.add(seconds * second)
}
// add_days returns a new time struct with an added number of days.
pub fn (t Time) add_days(days int) Time {
return t.add(days * 24 * hour)
}
// since returns a number of seconds elapsed since a given time.
fn since(t Time) int {
// TODO Use time.Duration instead of seconds
return 0
}
// relative returns a string representation of the difference between t
// and the current time.
pub fn (t Time) relative() string {
znow := now()
secs := znow.unix - t.unix
if secs <= 30 {
// right now or in the future
// TODO handle time in the future
return 'now'
}
if secs < 60 {
return '1m'
}
if secs < 3600 {
m := secs / 60
if m == 1 {
return '1 minute ago'
}
return '$m minutes ago'
}
if secs < 3600 * 24 {
h := secs / 3600
if h == 1 {
return '1 hour ago'
}
return '$h hours ago'
}
if secs < 3600 * 24 * 5 {
d := secs / 3600 / 24
if d == 1 {
return '1 day ago'
}
return '$d days ago'
}
if secs > 3600 * 24 * 10000 {
return ''
}
return t.md()
}
// relative_short returns a string saying how long ago a time occured as follows:
// 0-30 seconds: `"now"`; 30-60 seconds: `"1m"`; anything else is rounded to the
// nearest minute, hour or day; anything higher than 10000 days (about 27 years)
// years returns an empty string.
// Some Examples:
// `0s -> 'now'`;
// `20s -> 'now'`;
// `47s -> '1m'`;
// `456s -> '7m'`;
// `1234s -> '20m'`;
// `16834s -> '4h'`;
// `1687440s -> '33d'`;
// `15842354871s -> ''`
pub fn (t Time) relative_short() string {
znow := now()
secs := znow.unix - t.unix
if secs <= 30 {
// right now or in the future
// TODO handle time in the future
return 'now'
}
if secs < 60 {
return '1m'
}
if secs < 3600 {
return '${secs / 60}m'
}
if secs < 3600 * 24 {
return '${secs / 3600}h'
}
if secs < 3600 * 24 * 5 {
return '${secs / 3600 / 24}d'
}
if secs > 3600 * 24 * 10000 {
return ''
}
return t.md()
}
// day_of_week returns the current day of a given year, month, and day,
// as an integer.
pub fn day_of_week(y int, m int, d int) int {
// Sakomotho's algorithm is explained here:
// https://stackoverflow.com/a/6385934
t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4]
mut sy := y
if m < 3 {
sy = sy - 1
}
return (sy + sy / 4 - sy / 100 + sy / 400 + t[m - 1] + d - 1) % 7 + 1
}
// day_of_week returns the current day as an integer.
pub fn (t Time) day_of_week() int {
return day_of_week(t.year, t.month, t.day)
}
// weekday_str returns the current day as a string.
pub fn (t Time) weekday_str() string {
i := t.day_of_week() - 1
return days_string[i * 3..(i + 1) * 3]
}
// weekday_str returns the current day as a string.
pub fn (t Time) long_weekday_str() string {
i := t.day_of_week() - 1
return long_days[i]
}
// ticks returns a number of milliseconds elapsed since system start.
pub fn ticks() i64 {
$if windows {
return C.GetTickCount()
} $else {
ts := C.timeval{}
C.gettimeofday(&ts, 0)
return i64(ts.tv_sec * u64(1000) + (ts.tv_usec / u64(1000)))
}
// t := i64(C.mach_absolute_time())
// # Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t );
// # return (double)(* (uint64_t *) &elapsedNano) / 1000000;
}
// sleep makes the calling thread sleep for a given number of seconds.
pub fn sleep(seconds int) {
$if windows {
C.Sleep(seconds * 1000)
} $else {
C.sleep(seconds)
}
}
// sleep_ms makes the calling thread sleep for a given number of milliseconds.
pub fn sleep_ms(milliseconds int) {
$if windows {
C.Sleep(milliseconds)
} $else {
C.usleep(milliseconds * 1000)
}
}
// usleep makes the calling thread sleep for a given number of microseconds.
pub fn usleep(microseconds int) {
$if windows {
milliseconds := microseconds / 1000
C.Sleep(milliseconds)
} $else {
C.usleep(microseconds)
}
}
// is_leap_year checks if a given a year is a leap year.
pub fn is_leap_year(year int) bool {
return (year % 4 == 0) && (year % 100 != 0 || year % 400 == 0)
}
// days_in_month returns a number of days in a given month.
pub fn days_in_month(month int, year int) ?int {
if month > 12 || month < 1 {
return error('Invalid month: $month')
}
extra := if month == 2 && is_leap_year(year) { 1 } else { 0 }
res := month_days[month - 1] + extra
return res
}
// str returns time in the same format as `parse` expects ("YYYY-MM-DD HH:MM:SS").
pub fn (t Time) str() string {
// TODO Define common default format for
// `str` and `parse` and use it in both ways
return t.format_ss()
}
// convert_ctime converts a C time to V time.
fn convert_ctime(t C.tm, microsecond int) Time {
return Time{
year: t.tm_year + 1900
month: t.tm_mon + 1
day: t.tm_mday
hour: t.tm_hour
minute: t.tm_min
second: t.tm_sec
microsecond: microsecond
unix: u64(make_unix_time(t))
}
}
// A lot of these are taken from the Go library.
pub type Duration = i64
pub const (
nanosecond = Duration(1)
microsecond = Duration(1000 * nanosecond)
millisecond = Duration(1000 * microsecond)
second = Duration(1000 * millisecond)
minute = Duration(60 * second)
hour = Duration(60 * minute)
infinite = Duration(-1)
)
// nanoseconds returns the duration as an integer number of nanoseconds.
pub fn (d Duration) nanoseconds() i64 {
return i64(d)
}
// microseconds returns the duration as an integer number of microseconds.
pub fn (d Duration) microseconds() i64 {
return i64(d) / 1000
}
// milliseconds returns the duration as an integer number of milliseconds.
pub fn (d Duration) milliseconds() i64 {
return i64(d) / 1000000
}
// The following functions return floating point numbers because it's common to
// consider all of them in sub-one intervals
// seconds returns the duration as a floating point number of seconds.
pub fn (d Duration) seconds() f64 {
sec := d / second
nsec := d % second
return f64(sec) + f64(nsec) / 1e9
}
// minutes returns the duration as a floating point number of minutes.
pub fn (d Duration) minutes() f64 {
min := d / minute
nsec := d % minute
return f64(min) + f64(nsec) / (60 * 1e9)
}
// hours returns the duration as a floating point number of hours.
pub fn (d Duration) hours() f64 {
hr := d / hour
nsec := d % hour
return f64(hr) + f64(nsec) / (60 * 60 * 1e9)
}
// offset returns time zone UTC offset in seconds.
pub fn offset() int {
t := now()
local := t.local()
return int(local.unix - t.unix)
}