1
0
mirror of https://github.com/vlang/v.git synced 2023-08-10 21:13:21 +03:00
v/vlib/builtin/builtin.c.v

691 lines
17 KiB
V

[has_globals]
module builtin
type FnExitCb = fn ()
fn C.atexit(f FnExitCb) int
fn C.strerror(int) &char
[noreturn]
fn vhalt() {
for {}
}
[markused]
fn v_segmentation_fault_handler(signal_number int) {
$if freestanding {
eprintln('signal 11: segmentation fault')
} $else {
C.fprintf(C.stderr, c'signal %d: segmentation fault\n', signal_number)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace()
}
exit(128 + signal_number)
}
// exit terminates execution immediately and returns exit `code` to the shell.
[noreturn]
pub fn exit(code int) {
C.exit(code)
}
fn vcommithash() string {
return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) }
}
// panic_debug private function that V uses for panics, -cg/-g is passed
// recent versions of tcc print nicer backtraces automatically
// Note: the duplication here is because tcc_backtrace should be called directly
// inside the panic functions.
[noreturn]
fn panic_debug(line_no int, file string, mod string, fn_name string, s string) {
// Note: the order here is important for a stabler test output
// module is less likely to change than function, etc...
// During edits, the line number will change most frequently,
// so it is last
$if freestanding {
bare_panic(s)
} $else {
eprintln('================ V panic ================')
eprintln(' module: ${mod}')
eprintln(' function: ${fn_name}()')
eprintln(' message: ${s}')
eprintln(' file: ${file}:${line_no}')
eprintln(' v hash: ${vcommithash()}')
eprintln('=========================================')
$if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace_skipping_top_frames(1)
}
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
vhalt()
}
// panic_optional_not_set is called by V, when you use option error propagation in your main function.
// It ends the program with a panic.
[noreturn]
pub fn panic_optional_not_set(s string) {
panic('optional not set (${s})')
}
// panic_optional_not_set is called by V, when you use result error propagation in your main function
// It ends the program with a panic.
[noreturn]
pub fn panic_result_not_set(s string) {
panic('result not set (${s})')
}
// panic prints a nice error message, then exits the process with exit code of 1.
// It also shows a backtrace on most platforms.
[noreturn]
pub fn panic(s string) {
$if freestanding {
bare_panic(s)
} $else {
eprint('V panic: ')
eprintln(s)
eprintln('v hash: ${vcommithash()}')
$if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace_skipping_top_frames(1)
}
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
vhalt()
}
// return a C-API error message matching to `errnum`
pub fn c_error_number_str(errnum int) string {
mut err_msg := ''
$if freestanding {
err_msg = 'error ${errnum}'
} $else {
$if !vinix {
c_msg := C.strerror(errnum)
err_msg = string{
str: &u8(c_msg)
len: unsafe { C.strlen(c_msg) }
is_lit: 1
}
}
}
return err_msg
}
// panic with a C-API error message matching `errnum`
[noreturn]
pub fn panic_error_number(basestr string, errnum int) {
panic(basestr + c_error_number_str(errnum))
}
// eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed.
pub fn eprintln(s string) {
if s.str == 0 {
eprintln('eprintln(NIL)')
return
}
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
bare_eprint(s.str, u64(s.len))
bare_eprint(c'\n', 1)
} $else $if ios {
C.WrappedNSLog(s.str)
} $else {
C.fflush(C.stdout)
C.fflush(C.stderr)
// eprintln is used in panics, so it should not fail at all
$if android && !termux {
C.android_print(C.stderr, c'%.*s\n', s.len, s.str)
}
_writeln_to_fd(2, s)
C.fflush(C.stderr)
}
}
// eprint prints a message to stderr. Both stderr and stdout are flushed.
pub fn eprint(s string) {
if s.str == 0 {
eprint('eprint(NIL)')
return
}
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
bare_eprint(s.str, u64(s.len))
} $else $if ios {
// TODO: Implement a buffer as NSLog doesn't have a "print"
C.WrappedNSLog(s.str)
} $else {
C.fflush(C.stdout)
C.fflush(C.stderr)
$if android && !termux {
C.android_print(C.stderr, c'%.*s', s.len, s.str)
}
_write_buf_to_fd(2, s.str, s.len)
C.fflush(C.stderr)
}
}
pub fn flush_stdout() {
$if freestanding {
not_implemented := 'flush_stdout is not implemented\n'
bare_eprint(not_implemented.str, u64(not_implemented.len))
} $else {
C.fflush(C.stdout)
}
}
pub fn flush_stderr() {
$if freestanding {
not_implemented := 'flush_stderr is not implemented\n'
bare_eprint(not_implemented.str, u64(not_implemented.len))
} $else {
C.fflush(C.stderr)
}
}
// print prints a message to stdout. Unlike `println` stdout is not automatically flushed.
[manualfree]
pub fn print(s string) {
$if android && !termux {
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
} $else $if ios {
// TODO: Implement a buffer as NSLog doesn't have a "print"
C.WrappedNSLog(s.str)
} $else $if freestanding {
bare_print(s.str, u64(s.len))
} $else {
_write_buf_to_fd(1, s.str, s.len)
}
}
// println prints a message with a line end, to stdout. stdout is flushed.
[manualfree]
pub fn println(s string) {
if s.str == 0 {
println('println(NIL)')
return
}
$if android && !termux {
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
return
} $else $if ios {
C.WrappedNSLog(s.str)
return
} $else $if freestanding {
bare_print(s.str, u64(s.len))
bare_print(c'\n', 1)
return
} $else {
_writeln_to_fd(1, s)
}
}
[manualfree]
fn _writeln_to_fd(fd int, s string) {
unsafe {
buf_len := s.len + 1 // space for \n
mut buf := malloc(buf_len)
defer {
free(buf)
}
C.memcpy(buf, s.str, s.len)
buf[s.len] = `\n`
_write_buf_to_fd(fd, buf, buf_len)
}
}
[manualfree]
fn _write_buf_to_fd(fd int, buf &u8, buf_len int) {
if buf_len <= 0 {
return
}
mut ptr := unsafe { buf }
mut remaining_bytes := isize(buf_len)
mut x := isize(0)
$if freestanding || vinix {
unsafe {
for remaining_bytes > 0 {
x = C.write(fd, ptr, remaining_bytes)
ptr += x
remaining_bytes -= x
}
}
} $else {
mut stream := voidptr(C.stdout)
if fd == 2 {
stream = voidptr(C.stderr)
}
unsafe {
for remaining_bytes > 0 {
x = isize(C.fwrite(ptr, 1, remaining_bytes, stream))
ptr += x
remaining_bytes -= x
}
}
}
}
__global total_m = i64(0)
// malloc dynamically allocates a `n` bytes block of memory on the heap.
// malloc returns a `byteptr` pointing to the memory address of the allocated space.
// unlike the `calloc` family of functions - malloc will not zero the memory block.
[unsafe]
pub fn malloc(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n <= 0 {
panic('malloc(${n} <= 0)')
}
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB at once is not allowed in the V playground')
}
if total_m > 50 * 1024 * 1024 {
panic('allocating more than 50 MB is not allowed in the V playground')
}
}
mut res := &u8(0)
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
unsafe {
res = C.GC_MALLOC(n)
}
} $else $if freestanding {
// todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes
// so theoretically it is safe
res = unsafe { __malloc(usize(n)) }
} $else {
res = unsafe { C.malloc(n) }
}
if res == 0 {
panic('malloc(${n}) failed')
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
[unsafe]
pub fn malloc_noscan(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'malloc_noscan %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n <= 0 {
panic('malloc_noscan(${n} <= 0)')
}
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB at once is not allowed in the V playground')
}
if total_m > 50 * 1024 * 1024 {
panic('allocating more than 50 MB is not allowed in the V playground')
}
}
mut res := &u8(0)
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
$if gcboehm_opt ? {
unsafe {
res = C.GC_MALLOC_ATOMIC(n)
}
} $else {
unsafe {
res = C.GC_MALLOC(n)
}
}
} $else $if freestanding {
res = unsafe { __malloc(usize(n)) }
} $else {
res = unsafe { C.malloc(n) }
}
if res == 0 {
panic('malloc_noscan(${n}) failed')
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
[inline]
fn __at_least_one(how_many u64) u64 {
// handle the case for allocating memory for empty structs, which have sizeof(EmptyStruct) == 0
// in this case, just allocate a single byte, avoiding the panic for malloc(0)
if how_many == 0 {
return 1
}
return how_many
}
// malloc_uncollectable dynamically allocates a `n` bytes block of memory
// on the heap, which will NOT be garbage-collected (but its contents will).
[unsafe]
pub fn malloc_uncollectable(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'malloc_uncollectable %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n <= 0 {
panic('malloc_uncollectable(${n} <= 0)')
}
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB at once is not allowed in the V playground')
}
if total_m > 50 * 1024 * 1024 {
panic('allocating more than 50 MB is not allowed in the V playground')
}
}
mut res := &u8(0)
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
unsafe {
res = C.GC_MALLOC_UNCOLLECTABLE(n)
}
} $else $if freestanding {
res = unsafe { __malloc(usize(n)) }
} $else {
res = unsafe { C.malloc(n) }
}
if res == 0 {
panic('malloc_uncollectable(${n}) failed')
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
// v_realloc resizes the memory block `b` with `n` bytes.
// The `b byteptr` must be a pointer to an existing memory block
// previously allocated with `malloc`, `v_calloc` or `vcalloc`.
// Please, see also realloc_data, and use it instead if possible.
[unsafe]
pub fn v_realloc(b &u8, n isize) &u8 {
$if trace_realloc ? {
C.fprintf(C.stderr, c'v_realloc %6d\n', n)
}
mut new_ptr := &u8(0)
$if prealloc {
unsafe {
new_ptr = malloc(n)
C.memcpy(new_ptr, b, n)
}
return new_ptr
} $else $if gcboehm ? {
new_ptr = unsafe { C.GC_REALLOC(b, n) }
} $else {
new_ptr = unsafe { C.realloc(b, n) }
}
if new_ptr == 0 {
panic('realloc(${n}) failed')
}
return new_ptr
}
// realloc_data resizes the memory block pointed by `old_data` to `new_size`
// bytes. `old_data` must be a pointer to an existing memory block, previously
// allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`.
// realloc_data returns a pointer to the new location of the block.
// Note: if you know the old data size, it is preferable to call `realloc_data`,
// instead of `v_realloc`, at least during development, because `realloc_data`
// can make debugging easier, when you compile your program with
// `-d debug_realloc`.
[unsafe]
pub fn realloc_data(old_data &u8, old_size int, new_size int) &u8 {
$if trace_realloc ? {
C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size)
}
$if prealloc {
return unsafe { prealloc_realloc(old_data, old_size, new_size) }
}
$if debug_realloc ? {
// Note: this is slower, but helps debugging memory problems.
// The main idea is to always force reallocating:
// 1) allocate a new memory block
// 2) copy the old to the new
// 3) fill the old with 0x57 (`W`)
// 4) free the old block
// => if there is still a pointer to the old block somewhere
// it will point to memory that is now filled with 0x57.
unsafe {
new_ptr := malloc(new_size)
min_size := if old_size < new_size { old_size } else { new_size }
C.memcpy(new_ptr, old_data, min_size)
C.memset(old_data, 0x57, old_size)
free(old_data)
return new_ptr
}
}
mut nptr := &u8(0)
$if gcboehm ? {
nptr = unsafe { C.GC_REALLOC(old_data, new_size) }
} $else {
nptr = unsafe { C.realloc(old_data, new_size) }
}
if nptr == 0 {
panic('realloc_data(${old_data}, ${old_size}, ${new_size}) failed')
}
return nptr
}
// vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap.
// vcalloc returns a `byteptr` pointing to the memory address of the allocated space.
// Unlike `v_calloc` vcalloc checks for negative values given in `n`.
pub fn vcalloc(n isize) &u8 {
$if trace_vcalloc ? {
total_m += n
C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m)
}
if n < 0 {
panic('calloc(${n} < 0)')
} else if n == 0 {
return &u8(0)
}
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
return unsafe { &u8(C.GC_MALLOC(n)) }
} $else {
return unsafe { C.calloc(1, n) }
}
}
// special versions of the above that allocate memory which is not scanned
// for pointers (but is collected) when the Boehm garbage collection is used
pub fn vcalloc_noscan(n isize) &u8 {
$if trace_vcalloc ? {
total_m += n
C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m)
}
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
$if vplayground ? {
if n > 10000 {
panic('allocating more than 10 KB is not allowed in the playground')
}
}
if n < 0 {
panic('calloc_noscan(${n} < 0)')
}
return $if gcboehm_opt ? {
unsafe { &u8(C.memset(C.GC_MALLOC_ATOMIC(n), 0, n)) }
} $else {
unsafe { &u8(C.GC_MALLOC(n)) }
}
} $else {
return unsafe { vcalloc(n) }
}
}
// free allows for manually freeing memory allocated at the address `ptr`.
[unsafe]
pub fn free(ptr voidptr) {
$if prealloc {
return
} $else $if gcboehm ? {
// It is generally better to leave it to Boehm's gc to free things.
// Calling C.GC_FREE(ptr) was tried initially, but does not work
// well with programs that do manual management themselves.
//
// The exception is doing leak detection for manual memory management:
$if gcboehm_leak ? {
unsafe { C.GC_FREE(ptr) }
}
} $else {
C.free(ptr)
}
}
// memdup dynamically allocates a `sz` bytes block of memory on the heap
// memdup then copies the contents of `src` into the allocated space and
// returns a pointer to the newly allocated space.
[unsafe]
pub fn memdup(src voidptr, sz int) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup size: %10d\n', sz)
}
if sz == 0 {
return vcalloc(1)
}
unsafe {
mem := malloc(sz)
return C.memcpy(mem, src, sz)
}
}
[unsafe]
pub fn memdup_noscan(src voidptr, sz int) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup_noscan size: %10d\n', sz)
}
if sz == 0 {
return vcalloc_noscan(1)
}
unsafe {
mem := malloc_noscan(sz)
return C.memcpy(mem, src, sz)
}
}
// memdup_uncollectable dynamically allocates a `sz` bytes block of memory
// on the heap, which will NOT be garbage-collected (but its contents will).
// memdup_uncollectable then copies the contents of `src` into the allocated
// space and returns a pointer to the newly allocated space.
[unsafe]
pub fn memdup_uncollectable(src voidptr, sz int) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup_uncollectable size: %10d\n', sz)
}
if sz == 0 {
return vcalloc(1)
}
unsafe {
mem := malloc_uncollectable(sz)
return C.memcpy(mem, src, sz)
}
}
[inline]
fn v_fixed_index(i int, len int) int {
$if !no_bounds_checking {
if i < 0 || i >= len {
s := 'fixed array index out of range (index: ${i}, len: ${len})'
panic(s)
}
}
return i
}
// print_backtrace shows a backtrace of the current call stack on stdout
pub fn print_backtrace() {
// At the time of backtrace_symbols_fd call, the C stack would look something like this:
// * print_backtrace_skipping_top_frames
// * print_backtrace itself
// * the rest of the backtrace frames
// => top 2 frames should be skipped, since they will not be informative to the developer
$if !no_backtrace ? {
$if freestanding {
println(bare_backtrace())
} $else {
$if tinyc {
C.tcc_backtrace(c'Backtrace')
} $else {
// NOTE: TCC doesn't have the unwind library
$if use_libbacktrace ? {
print_libbacktrace(1)
} $else {
print_backtrace_skipping_top_frames(2)
}
}
}
}
}
// NOTE: g_main_argc and g_main_argv are filled in right after C's main start.
// They are used internally by V's builtin; for user code, it is much
// more convenient to just use `os.args` instead.
[markused]
__global g_main_argc = int(0)
[markused]
__global g_main_argv = unsafe { nil }