mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
691 lines
17 KiB
V
691 lines
17 KiB
V
[has_globals]
|
|
module builtin
|
|
|
|
type FnExitCb = fn ()
|
|
|
|
fn C.atexit(f FnExitCb) int
|
|
fn C.strerror(int) &char
|
|
|
|
[noreturn]
|
|
fn vhalt() {
|
|
for {}
|
|
}
|
|
|
|
[markused]
|
|
fn v_segmentation_fault_handler(signal_number int) {
|
|
$if freestanding {
|
|
eprintln('signal 11: segmentation fault')
|
|
} $else {
|
|
C.fprintf(C.stderr, c'signal %d: segmentation fault\n', signal_number)
|
|
}
|
|
$if use_libbacktrace ? {
|
|
eprint_libbacktrace(1)
|
|
} $else {
|
|
print_backtrace()
|
|
}
|
|
exit(128 + signal_number)
|
|
}
|
|
|
|
// exit terminates execution immediately and returns exit `code` to the shell.
|
|
[noreturn]
|
|
pub fn exit(code int) {
|
|
C.exit(code)
|
|
}
|
|
|
|
fn vcommithash() string {
|
|
return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) }
|
|
}
|
|
|
|
// panic_debug private function that V uses for panics, -cg/-g is passed
|
|
// recent versions of tcc print nicer backtraces automatically
|
|
// Note: the duplication here is because tcc_backtrace should be called directly
|
|
// inside the panic functions.
|
|
[noreturn]
|
|
fn panic_debug(line_no int, file string, mod string, fn_name string, s string) {
|
|
// Note: the order here is important for a stabler test output
|
|
// module is less likely to change than function, etc...
|
|
// During edits, the line number will change most frequently,
|
|
// so it is last
|
|
$if freestanding {
|
|
bare_panic(s)
|
|
} $else {
|
|
eprintln('================ V panic ================')
|
|
eprintln(' module: ${mod}')
|
|
eprintln(' function: ${fn_name}()')
|
|
eprintln(' message: ${s}')
|
|
eprintln(' file: ${file}:${line_no}')
|
|
eprintln(' v hash: ${vcommithash()}')
|
|
eprintln('=========================================')
|
|
$if exit_after_panic_message ? {
|
|
C.exit(1)
|
|
} $else $if no_backtrace ? {
|
|
C.exit(1)
|
|
} $else {
|
|
$if tinyc {
|
|
$if panics_break_into_debugger ? {
|
|
break_if_debugger_attached()
|
|
} $else {
|
|
C.tcc_backtrace(c'Backtrace')
|
|
}
|
|
C.exit(1)
|
|
}
|
|
$if use_libbacktrace ? {
|
|
eprint_libbacktrace(1)
|
|
} $else {
|
|
print_backtrace_skipping_top_frames(1)
|
|
}
|
|
$if panics_break_into_debugger ? {
|
|
break_if_debugger_attached()
|
|
}
|
|
C.exit(1)
|
|
}
|
|
}
|
|
vhalt()
|
|
}
|
|
|
|
// panic_optional_not_set is called by V, when you use option error propagation in your main function.
|
|
// It ends the program with a panic.
|
|
[noreturn]
|
|
pub fn panic_optional_not_set(s string) {
|
|
panic('optional not set (${s})')
|
|
}
|
|
|
|
// panic_optional_not_set is called by V, when you use result error propagation in your main function
|
|
// It ends the program with a panic.
|
|
[noreturn]
|
|
pub fn panic_result_not_set(s string) {
|
|
panic('result not set (${s})')
|
|
}
|
|
|
|
// panic prints a nice error message, then exits the process with exit code of 1.
|
|
// It also shows a backtrace on most platforms.
|
|
[noreturn]
|
|
pub fn panic(s string) {
|
|
$if freestanding {
|
|
bare_panic(s)
|
|
} $else {
|
|
eprint('V panic: ')
|
|
eprintln(s)
|
|
eprintln('v hash: ${vcommithash()}')
|
|
$if exit_after_panic_message ? {
|
|
C.exit(1)
|
|
} $else $if no_backtrace ? {
|
|
C.exit(1)
|
|
} $else {
|
|
$if tinyc {
|
|
$if panics_break_into_debugger ? {
|
|
break_if_debugger_attached()
|
|
} $else {
|
|
C.tcc_backtrace(c'Backtrace')
|
|
}
|
|
C.exit(1)
|
|
}
|
|
$if use_libbacktrace ? {
|
|
eprint_libbacktrace(1)
|
|
} $else {
|
|
print_backtrace_skipping_top_frames(1)
|
|
}
|
|
$if panics_break_into_debugger ? {
|
|
break_if_debugger_attached()
|
|
}
|
|
C.exit(1)
|
|
}
|
|
}
|
|
vhalt()
|
|
}
|
|
|
|
// return a C-API error message matching to `errnum`
|
|
pub fn c_error_number_str(errnum int) string {
|
|
mut err_msg := ''
|
|
$if freestanding {
|
|
err_msg = 'error ${errnum}'
|
|
} $else {
|
|
$if !vinix {
|
|
c_msg := C.strerror(errnum)
|
|
err_msg = string{
|
|
str: &u8(c_msg)
|
|
len: unsafe { C.strlen(c_msg) }
|
|
is_lit: 1
|
|
}
|
|
}
|
|
}
|
|
return err_msg
|
|
}
|
|
|
|
// panic with a C-API error message matching `errnum`
|
|
[noreturn]
|
|
pub fn panic_error_number(basestr string, errnum int) {
|
|
panic(basestr + c_error_number_str(errnum))
|
|
}
|
|
|
|
// eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed.
|
|
pub fn eprintln(s string) {
|
|
if s.str == 0 {
|
|
eprintln('eprintln(NIL)')
|
|
return
|
|
}
|
|
$if freestanding {
|
|
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
|
|
bare_eprint(s.str, u64(s.len))
|
|
bare_eprint(c'\n', 1)
|
|
} $else $if ios {
|
|
C.WrappedNSLog(s.str)
|
|
} $else {
|
|
C.fflush(C.stdout)
|
|
C.fflush(C.stderr)
|
|
// eprintln is used in panics, so it should not fail at all
|
|
$if android && !termux {
|
|
C.android_print(C.stderr, c'%.*s\n', s.len, s.str)
|
|
}
|
|
_writeln_to_fd(2, s)
|
|
C.fflush(C.stderr)
|
|
}
|
|
}
|
|
|
|
// eprint prints a message to stderr. Both stderr and stdout are flushed.
|
|
pub fn eprint(s string) {
|
|
if s.str == 0 {
|
|
eprint('eprint(NIL)')
|
|
return
|
|
}
|
|
$if freestanding {
|
|
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
|
|
bare_eprint(s.str, u64(s.len))
|
|
} $else $if ios {
|
|
// TODO: Implement a buffer as NSLog doesn't have a "print"
|
|
C.WrappedNSLog(s.str)
|
|
} $else {
|
|
C.fflush(C.stdout)
|
|
C.fflush(C.stderr)
|
|
$if android && !termux {
|
|
C.android_print(C.stderr, c'%.*s', s.len, s.str)
|
|
}
|
|
_write_buf_to_fd(2, s.str, s.len)
|
|
C.fflush(C.stderr)
|
|
}
|
|
}
|
|
|
|
pub fn flush_stdout() {
|
|
$if freestanding {
|
|
not_implemented := 'flush_stdout is not implemented\n'
|
|
bare_eprint(not_implemented.str, u64(not_implemented.len))
|
|
} $else {
|
|
C.fflush(C.stdout)
|
|
}
|
|
}
|
|
|
|
pub fn flush_stderr() {
|
|
$if freestanding {
|
|
not_implemented := 'flush_stderr is not implemented\n'
|
|
bare_eprint(not_implemented.str, u64(not_implemented.len))
|
|
} $else {
|
|
C.fflush(C.stderr)
|
|
}
|
|
}
|
|
|
|
// print prints a message to stdout. Unlike `println` stdout is not automatically flushed.
|
|
[manualfree]
|
|
pub fn print(s string) {
|
|
$if android && !termux {
|
|
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
|
|
} $else $if ios {
|
|
// TODO: Implement a buffer as NSLog doesn't have a "print"
|
|
C.WrappedNSLog(s.str)
|
|
} $else $if freestanding {
|
|
bare_print(s.str, u64(s.len))
|
|
} $else {
|
|
_write_buf_to_fd(1, s.str, s.len)
|
|
}
|
|
}
|
|
|
|
// println prints a message with a line end, to stdout. stdout is flushed.
|
|
[manualfree]
|
|
pub fn println(s string) {
|
|
if s.str == 0 {
|
|
println('println(NIL)')
|
|
return
|
|
}
|
|
$if android && !termux {
|
|
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
|
|
return
|
|
} $else $if ios {
|
|
C.WrappedNSLog(s.str)
|
|
return
|
|
} $else $if freestanding {
|
|
bare_print(s.str, u64(s.len))
|
|
bare_print(c'\n', 1)
|
|
return
|
|
} $else {
|
|
_writeln_to_fd(1, s)
|
|
}
|
|
}
|
|
|
|
[manualfree]
|
|
fn _writeln_to_fd(fd int, s string) {
|
|
unsafe {
|
|
buf_len := s.len + 1 // space for \n
|
|
mut buf := malloc(buf_len)
|
|
defer {
|
|
free(buf)
|
|
}
|
|
C.memcpy(buf, s.str, s.len)
|
|
buf[s.len] = `\n`
|
|
_write_buf_to_fd(fd, buf, buf_len)
|
|
}
|
|
}
|
|
|
|
[manualfree]
|
|
fn _write_buf_to_fd(fd int, buf &u8, buf_len int) {
|
|
if buf_len <= 0 {
|
|
return
|
|
}
|
|
mut ptr := unsafe { buf }
|
|
mut remaining_bytes := isize(buf_len)
|
|
mut x := isize(0)
|
|
$if freestanding || vinix {
|
|
unsafe {
|
|
for remaining_bytes > 0 {
|
|
x = C.write(fd, ptr, remaining_bytes)
|
|
ptr += x
|
|
remaining_bytes -= x
|
|
}
|
|
}
|
|
} $else {
|
|
mut stream := voidptr(C.stdout)
|
|
if fd == 2 {
|
|
stream = voidptr(C.stderr)
|
|
}
|
|
unsafe {
|
|
for remaining_bytes > 0 {
|
|
x = isize(C.fwrite(ptr, 1, remaining_bytes, stream))
|
|
ptr += x
|
|
remaining_bytes -= x
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__global total_m = i64(0)
|
|
// malloc dynamically allocates a `n` bytes block of memory on the heap.
|
|
// malloc returns a `byteptr` pointing to the memory address of the allocated space.
|
|
// unlike the `calloc` family of functions - malloc will not zero the memory block.
|
|
[unsafe]
|
|
pub fn malloc(n isize) &u8 {
|
|
$if trace_malloc ? {
|
|
total_m += n
|
|
C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m)
|
|
// print_backtrace()
|
|
}
|
|
if n <= 0 {
|
|
panic('malloc(${n} <= 0)')
|
|
}
|
|
$if vplayground ? {
|
|
if n > 10000 {
|
|
panic('allocating more than 10 KB at once is not allowed in the V playground')
|
|
}
|
|
if total_m > 50 * 1024 * 1024 {
|
|
panic('allocating more than 50 MB is not allowed in the V playground')
|
|
}
|
|
}
|
|
mut res := &u8(0)
|
|
$if prealloc {
|
|
return unsafe { prealloc_malloc(n) }
|
|
} $else $if gcboehm ? {
|
|
unsafe {
|
|
res = C.GC_MALLOC(n)
|
|
}
|
|
} $else $if freestanding {
|
|
// todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes
|
|
// so theoretically it is safe
|
|
res = unsafe { __malloc(usize(n)) }
|
|
} $else {
|
|
res = unsafe { C.malloc(n) }
|
|
}
|
|
if res == 0 {
|
|
panic('malloc(${n}) failed')
|
|
}
|
|
$if debug_malloc ? {
|
|
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
|
|
// when the calling code wrongly relies on it being zeroed.
|
|
unsafe { C.memset(res, 0x4D, n) }
|
|
}
|
|
return res
|
|
}
|
|
|
|
[unsafe]
|
|
pub fn malloc_noscan(n isize) &u8 {
|
|
$if trace_malloc ? {
|
|
total_m += n
|
|
C.fprintf(C.stderr, c'malloc_noscan %6d total %10d\n', n, total_m)
|
|
// print_backtrace()
|
|
}
|
|
if n <= 0 {
|
|
panic('malloc_noscan(${n} <= 0)')
|
|
}
|
|
$if vplayground ? {
|
|
if n > 10000 {
|
|
panic('allocating more than 10 KB at once is not allowed in the V playground')
|
|
}
|
|
if total_m > 50 * 1024 * 1024 {
|
|
panic('allocating more than 50 MB is not allowed in the V playground')
|
|
}
|
|
}
|
|
mut res := &u8(0)
|
|
$if prealloc {
|
|
return unsafe { prealloc_malloc(n) }
|
|
} $else $if gcboehm ? {
|
|
$if gcboehm_opt ? {
|
|
unsafe {
|
|
res = C.GC_MALLOC_ATOMIC(n)
|
|
}
|
|
} $else {
|
|
unsafe {
|
|
res = C.GC_MALLOC(n)
|
|
}
|
|
}
|
|
} $else $if freestanding {
|
|
res = unsafe { __malloc(usize(n)) }
|
|
} $else {
|
|
res = unsafe { C.malloc(n) }
|
|
}
|
|
if res == 0 {
|
|
panic('malloc_noscan(${n}) failed')
|
|
}
|
|
$if debug_malloc ? {
|
|
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
|
|
// when the calling code wrongly relies on it being zeroed.
|
|
unsafe { C.memset(res, 0x4D, n) }
|
|
}
|
|
return res
|
|
}
|
|
|
|
[inline]
|
|
fn __at_least_one(how_many u64) u64 {
|
|
// handle the case for allocating memory for empty structs, which have sizeof(EmptyStruct) == 0
|
|
// in this case, just allocate a single byte, avoiding the panic for malloc(0)
|
|
if how_many == 0 {
|
|
return 1
|
|
}
|
|
return how_many
|
|
}
|
|
|
|
// malloc_uncollectable dynamically allocates a `n` bytes block of memory
|
|
// on the heap, which will NOT be garbage-collected (but its contents will).
|
|
[unsafe]
|
|
pub fn malloc_uncollectable(n isize) &u8 {
|
|
$if trace_malloc ? {
|
|
total_m += n
|
|
C.fprintf(C.stderr, c'malloc_uncollectable %6d total %10d\n', n, total_m)
|
|
// print_backtrace()
|
|
}
|
|
if n <= 0 {
|
|
panic('malloc_uncollectable(${n} <= 0)')
|
|
}
|
|
$if vplayground ? {
|
|
if n > 10000 {
|
|
panic('allocating more than 10 KB at once is not allowed in the V playground')
|
|
}
|
|
if total_m > 50 * 1024 * 1024 {
|
|
panic('allocating more than 50 MB is not allowed in the V playground')
|
|
}
|
|
}
|
|
mut res := &u8(0)
|
|
$if prealloc {
|
|
return unsafe { prealloc_malloc(n) }
|
|
} $else $if gcboehm ? {
|
|
unsafe {
|
|
res = C.GC_MALLOC_UNCOLLECTABLE(n)
|
|
}
|
|
} $else $if freestanding {
|
|
res = unsafe { __malloc(usize(n)) }
|
|
} $else {
|
|
res = unsafe { C.malloc(n) }
|
|
}
|
|
if res == 0 {
|
|
panic('malloc_uncollectable(${n}) failed')
|
|
}
|
|
$if debug_malloc ? {
|
|
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
|
|
// when the calling code wrongly relies on it being zeroed.
|
|
unsafe { C.memset(res, 0x4D, n) }
|
|
}
|
|
return res
|
|
}
|
|
|
|
// v_realloc resizes the memory block `b` with `n` bytes.
|
|
// The `b byteptr` must be a pointer to an existing memory block
|
|
// previously allocated with `malloc`, `v_calloc` or `vcalloc`.
|
|
// Please, see also realloc_data, and use it instead if possible.
|
|
[unsafe]
|
|
pub fn v_realloc(b &u8, n isize) &u8 {
|
|
$if trace_realloc ? {
|
|
C.fprintf(C.stderr, c'v_realloc %6d\n', n)
|
|
}
|
|
mut new_ptr := &u8(0)
|
|
$if prealloc {
|
|
unsafe {
|
|
new_ptr = malloc(n)
|
|
C.memcpy(new_ptr, b, n)
|
|
}
|
|
return new_ptr
|
|
} $else $if gcboehm ? {
|
|
new_ptr = unsafe { C.GC_REALLOC(b, n) }
|
|
} $else {
|
|
new_ptr = unsafe { C.realloc(b, n) }
|
|
}
|
|
if new_ptr == 0 {
|
|
panic('realloc(${n}) failed')
|
|
}
|
|
return new_ptr
|
|
}
|
|
|
|
// realloc_data resizes the memory block pointed by `old_data` to `new_size`
|
|
// bytes. `old_data` must be a pointer to an existing memory block, previously
|
|
// allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`.
|
|
// realloc_data returns a pointer to the new location of the block.
|
|
// Note: if you know the old data size, it is preferable to call `realloc_data`,
|
|
// instead of `v_realloc`, at least during development, because `realloc_data`
|
|
// can make debugging easier, when you compile your program with
|
|
// `-d debug_realloc`.
|
|
[unsafe]
|
|
pub fn realloc_data(old_data &u8, old_size int, new_size int) &u8 {
|
|
$if trace_realloc ? {
|
|
C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size)
|
|
}
|
|
$if prealloc {
|
|
return unsafe { prealloc_realloc(old_data, old_size, new_size) }
|
|
}
|
|
$if debug_realloc ? {
|
|
// Note: this is slower, but helps debugging memory problems.
|
|
// The main idea is to always force reallocating:
|
|
// 1) allocate a new memory block
|
|
// 2) copy the old to the new
|
|
// 3) fill the old with 0x57 (`W`)
|
|
// 4) free the old block
|
|
// => if there is still a pointer to the old block somewhere
|
|
// it will point to memory that is now filled with 0x57.
|
|
unsafe {
|
|
new_ptr := malloc(new_size)
|
|
min_size := if old_size < new_size { old_size } else { new_size }
|
|
C.memcpy(new_ptr, old_data, min_size)
|
|
C.memset(old_data, 0x57, old_size)
|
|
free(old_data)
|
|
return new_ptr
|
|
}
|
|
}
|
|
mut nptr := &u8(0)
|
|
$if gcboehm ? {
|
|
nptr = unsafe { C.GC_REALLOC(old_data, new_size) }
|
|
} $else {
|
|
nptr = unsafe { C.realloc(old_data, new_size) }
|
|
}
|
|
if nptr == 0 {
|
|
panic('realloc_data(${old_data}, ${old_size}, ${new_size}) failed')
|
|
}
|
|
return nptr
|
|
}
|
|
|
|
// vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap.
|
|
// vcalloc returns a `byteptr` pointing to the memory address of the allocated space.
|
|
// Unlike `v_calloc` vcalloc checks for negative values given in `n`.
|
|
pub fn vcalloc(n isize) &u8 {
|
|
$if trace_vcalloc ? {
|
|
total_m += n
|
|
C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m)
|
|
}
|
|
if n < 0 {
|
|
panic('calloc(${n} < 0)')
|
|
} else if n == 0 {
|
|
return &u8(0)
|
|
}
|
|
$if prealloc {
|
|
return unsafe { prealloc_calloc(n) }
|
|
} $else $if gcboehm ? {
|
|
return unsafe { &u8(C.GC_MALLOC(n)) }
|
|
} $else {
|
|
return unsafe { C.calloc(1, n) }
|
|
}
|
|
}
|
|
|
|
// special versions of the above that allocate memory which is not scanned
|
|
// for pointers (but is collected) when the Boehm garbage collection is used
|
|
pub fn vcalloc_noscan(n isize) &u8 {
|
|
$if trace_vcalloc ? {
|
|
total_m += n
|
|
C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m)
|
|
}
|
|
$if prealloc {
|
|
return unsafe { prealloc_calloc(n) }
|
|
} $else $if gcboehm ? {
|
|
$if vplayground ? {
|
|
if n > 10000 {
|
|
panic('allocating more than 10 KB is not allowed in the playground')
|
|
}
|
|
}
|
|
if n < 0 {
|
|
panic('calloc_noscan(${n} < 0)')
|
|
}
|
|
return $if gcboehm_opt ? {
|
|
unsafe { &u8(C.memset(C.GC_MALLOC_ATOMIC(n), 0, n)) }
|
|
} $else {
|
|
unsafe { &u8(C.GC_MALLOC(n)) }
|
|
}
|
|
} $else {
|
|
return unsafe { vcalloc(n) }
|
|
}
|
|
}
|
|
|
|
// free allows for manually freeing memory allocated at the address `ptr`.
|
|
[unsafe]
|
|
pub fn free(ptr voidptr) {
|
|
$if prealloc {
|
|
return
|
|
} $else $if gcboehm ? {
|
|
// It is generally better to leave it to Boehm's gc to free things.
|
|
// Calling C.GC_FREE(ptr) was tried initially, but does not work
|
|
// well with programs that do manual management themselves.
|
|
//
|
|
// The exception is doing leak detection for manual memory management:
|
|
$if gcboehm_leak ? {
|
|
unsafe { C.GC_FREE(ptr) }
|
|
}
|
|
} $else {
|
|
C.free(ptr)
|
|
}
|
|
}
|
|
|
|
// memdup dynamically allocates a `sz` bytes block of memory on the heap
|
|
// memdup then copies the contents of `src` into the allocated space and
|
|
// returns a pointer to the newly allocated space.
|
|
[unsafe]
|
|
pub fn memdup(src voidptr, sz int) voidptr {
|
|
$if trace_memdup ? {
|
|
C.fprintf(C.stderr, c'memdup size: %10d\n', sz)
|
|
}
|
|
if sz == 0 {
|
|
return vcalloc(1)
|
|
}
|
|
unsafe {
|
|
mem := malloc(sz)
|
|
return C.memcpy(mem, src, sz)
|
|
}
|
|
}
|
|
|
|
[unsafe]
|
|
pub fn memdup_noscan(src voidptr, sz int) voidptr {
|
|
$if trace_memdup ? {
|
|
C.fprintf(C.stderr, c'memdup_noscan size: %10d\n', sz)
|
|
}
|
|
if sz == 0 {
|
|
return vcalloc_noscan(1)
|
|
}
|
|
unsafe {
|
|
mem := malloc_noscan(sz)
|
|
return C.memcpy(mem, src, sz)
|
|
}
|
|
}
|
|
|
|
// memdup_uncollectable dynamically allocates a `sz` bytes block of memory
|
|
// on the heap, which will NOT be garbage-collected (but its contents will).
|
|
// memdup_uncollectable then copies the contents of `src` into the allocated
|
|
// space and returns a pointer to the newly allocated space.
|
|
[unsafe]
|
|
pub fn memdup_uncollectable(src voidptr, sz int) voidptr {
|
|
$if trace_memdup ? {
|
|
C.fprintf(C.stderr, c'memdup_uncollectable size: %10d\n', sz)
|
|
}
|
|
if sz == 0 {
|
|
return vcalloc(1)
|
|
}
|
|
unsafe {
|
|
mem := malloc_uncollectable(sz)
|
|
return C.memcpy(mem, src, sz)
|
|
}
|
|
}
|
|
|
|
[inline]
|
|
fn v_fixed_index(i int, len int) int {
|
|
$if !no_bounds_checking {
|
|
if i < 0 || i >= len {
|
|
s := 'fixed array index out of range (index: ${i}, len: ${len})'
|
|
panic(s)
|
|
}
|
|
}
|
|
return i
|
|
}
|
|
|
|
// print_backtrace shows a backtrace of the current call stack on stdout
|
|
pub fn print_backtrace() {
|
|
// At the time of backtrace_symbols_fd call, the C stack would look something like this:
|
|
// * print_backtrace_skipping_top_frames
|
|
// * print_backtrace itself
|
|
// * the rest of the backtrace frames
|
|
// => top 2 frames should be skipped, since they will not be informative to the developer
|
|
$if !no_backtrace ? {
|
|
$if freestanding {
|
|
println(bare_backtrace())
|
|
} $else {
|
|
$if tinyc {
|
|
C.tcc_backtrace(c'Backtrace')
|
|
} $else {
|
|
// NOTE: TCC doesn't have the unwind library
|
|
$if use_libbacktrace ? {
|
|
print_libbacktrace(1)
|
|
} $else {
|
|
print_backtrace_skipping_top_frames(2)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// NOTE: g_main_argc and g_main_argv are filled in right after C's main start.
|
|
// They are used internally by V's builtin; for user code, it is much
|
|
// more convenient to just use `os.args` instead.
|
|
|
|
[markused]
|
|
__global g_main_argc = int(0)
|
|
|
|
[markused]
|
|
__global g_main_argv = unsafe { nil }
|