mirror of
https://github.com/vlang/v.git
synced 2023-08-10 21:13:21 +03:00
528 lines
12 KiB
V
528 lines
12 KiB
V
// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved.
|
|
// Use of this source code is governed by an MIT license
|
|
// that can be found in the LICENSE file.
|
|
module builtin
|
|
|
|
import strings
|
|
|
|
pub struct array {
|
|
pub:
|
|
data voidptr// Using a void pointer allows to implement arrays without generics and without generating
|
|
// extra code for every type.
|
|
len int
|
|
cap int
|
|
element_size int
|
|
}
|
|
|
|
// Internal function, used by V (`nums := []int`)
|
|
fn __new_array(mylen int, cap int, elm_size int) array {
|
|
cap_ := if cap == 0 { 1 } else { cap }
|
|
arr := array{
|
|
len: mylen
|
|
cap: cap_
|
|
element_size: elm_size
|
|
data: vcalloc(cap_ * elm_size)
|
|
}
|
|
return arr
|
|
}
|
|
|
|
// Private function, used by V (`nums := [1, 2, 3]`)
|
|
fn new_array_from_c_array(len, cap, elm_size int, c_array voidptr) array {
|
|
cap_ := if cap == 0 { 1 } else { cap }
|
|
|
|
arr := array{
|
|
len: len
|
|
cap: cap
|
|
element_size: elm_size
|
|
data: vcalloc(cap_ * elm_size)
|
|
}
|
|
// TODO Write all memory functions (like memcpy) in V
|
|
C.memcpy(arr.data, c_array, len * elm_size)
|
|
return arr
|
|
}
|
|
|
|
// Private function, used by V (`nums := [1, 2, 3] !`)
|
|
fn new_array_from_c_array_no_alloc(len, cap, elm_size int, c_array voidptr) array {
|
|
arr := array{
|
|
len: len
|
|
cap: cap
|
|
element_size: elm_size
|
|
data: c_array
|
|
}
|
|
return arr
|
|
}
|
|
|
|
// Private function. Doubles array capacity if needed
|
|
fn (a mut array) ensure_cap(required int) {
|
|
if required <= a.cap {
|
|
return
|
|
}
|
|
mut cap := if a.cap == 0 { 2 } else { a.cap * 2 }
|
|
for required > cap {
|
|
cap *= 2
|
|
}
|
|
if a.cap == 0 {
|
|
a.data = vcalloc(cap * a.element_size)
|
|
}
|
|
else {
|
|
a.data = C.realloc(a.data, cap * a.element_size)
|
|
}
|
|
a.cap = cap
|
|
}
|
|
|
|
// repeat returns new array with the given array elements repeated given times.
|
|
pub fn (a array) repeat(count int) array {
|
|
if count < 0 {
|
|
panic('array.repeat: count is negative: $count')
|
|
}
|
|
mut size := count * a.len * a.element_size
|
|
if size == 0 {
|
|
size = a.element_size
|
|
}
|
|
arr := array{
|
|
len: count * a.len
|
|
cap: count * a.len
|
|
element_size: a.element_size
|
|
data: vcalloc(size)
|
|
}
|
|
for i in 0..count {
|
|
C.memcpy(byteptr(arr.data) + i * a.len * a.element_size, byteptr(a.data), a.len * a.element_size)
|
|
}
|
|
return arr
|
|
}
|
|
|
|
// array.sort sorts array in-place using given `compare` function as comparator
|
|
pub fn (a mut array) sort_with_compare(compare voidptr) {
|
|
C.qsort(a.data, a.len, a.element_size, compare)
|
|
}
|
|
|
|
// TODO array.insert is broken
|
|
// Cannot pass literal or primitive type as it cannot be cast to voidptr.
|
|
// In the current state only that would work:
|
|
// i := 3
|
|
// a.insert(0, &i)
|
|
// ----------------------------
|
|
pub fn (a mut array) insert(i int, val voidptr) {
|
|
$if !no_bounds_checking? {
|
|
if i < 0 || i > a.len {
|
|
panic('array.insert: index out of range (i == $i, a.len == $a.len)')
|
|
}
|
|
}
|
|
a.ensure_cap(a.len + 1)
|
|
size := a.element_size
|
|
C.memmove(byteptr(a.data) + (i + 1) * size, byteptr(a.data) + i * size, (a.len - i) * size)
|
|
C.memcpy(byteptr(a.data) + i * size, val, size)
|
|
a.len++
|
|
}
|
|
|
|
// TODO array.prepend is broken
|
|
// It depends on array.insert
|
|
// -----------------------------
|
|
pub fn (a mut array) prepend(val voidptr) {
|
|
a.insert(0, val)
|
|
}
|
|
|
|
// array.delete deletes array element at the given index
|
|
pub fn (a mut array) delete(i int) {
|
|
$if !no_bounds_checking? {
|
|
if i < 0 || i >= a.len {
|
|
panic('array.delete: index out of range (i == $i, a.len == $a.len)')
|
|
}
|
|
}
|
|
size := a.element_size
|
|
C.memmove(byteptr(a.data) + i * size, byteptr(a.data) + (i + 1) * size, (a.len - i) * size)
|
|
a.len--
|
|
}
|
|
|
|
// clears the array without deallocating the allocated data
|
|
pub fn (a mut array) clear() {
|
|
a.len = 0
|
|
}
|
|
|
|
// trims the array length to "index" without modifying the allocated data. If "index" is greater
|
|
// than len nothing will be changed
|
|
pub fn (a mut array) trim(index int) {
|
|
if index < a.len {
|
|
a.len = index
|
|
}
|
|
}
|
|
|
|
// Private function. Used to implement array[] operator
|
|
fn (a array) get(i int) voidptr {
|
|
$if !no_bounds_checking? {
|
|
if i < 0 || i >= a.len {
|
|
panic('array.get: index out of range (i == $i, a.len == $a.len)')
|
|
}
|
|
}
|
|
return byteptr(a.data) + i * a.element_size
|
|
}
|
|
|
|
// array.first returns the first element of the array
|
|
pub fn (a array) first() voidptr {
|
|
$if !no_bounds_checking? {
|
|
if a.len == 0 {
|
|
panic('array.first: array is empty')
|
|
}
|
|
}
|
|
return a.data
|
|
}
|
|
|
|
// array.last returns the last element of the array
|
|
pub fn (a array) last() voidptr {
|
|
$if !no_bounds_checking? {
|
|
if a.len == 0 {
|
|
panic('array.last: array is empty')
|
|
}
|
|
}
|
|
return byteptr(a.data) + (a.len - 1) * a.element_size
|
|
}
|
|
|
|
// array.slice returns an array using the same buffer as original array
|
|
// but starting from the `start` element and ending with the element before
|
|
// the `end` element of the original array with the length and capacity
|
|
// set to the number of the elements in the slice.
|
|
fn (a array) slice(start, _end int) array {
|
|
mut end := _end
|
|
$if !no_bounds_checking? {
|
|
if start > end {
|
|
panic('array.slice: invalid slice index ($start > $end)')
|
|
}
|
|
if end > a.len {
|
|
panic('array.slice: slice bounds out of range ($end >= $a.len)')
|
|
}
|
|
if start < 0 {
|
|
panic('array.slice: slice bounds out of range ($start < 0)')
|
|
}
|
|
}
|
|
l := end - start
|
|
res := array{
|
|
element_size: a.element_size
|
|
data: byteptr(a.data) + start * a.element_size
|
|
len: l
|
|
cap: l
|
|
}
|
|
return res
|
|
}
|
|
|
|
// used internally for [2..4]
|
|
fn (a array) slice2(start, _end int, end_max bool) array {
|
|
end := if end_max { a.len } else { _end }
|
|
return a.slice(start, end)
|
|
}
|
|
|
|
// array.clone returns an independent copy of a given array
|
|
pub fn (a &array) clone() array {
|
|
mut size := a.cap * a.element_size
|
|
if size == 0 {
|
|
size++
|
|
}
|
|
arr := array{
|
|
len: a.len
|
|
cap: a.cap
|
|
element_size: a.element_size
|
|
data: vcalloc(size)
|
|
}
|
|
C.memcpy(byteptr(arr.data), a.data, a.cap * a.element_size)
|
|
return arr
|
|
}
|
|
|
|
fn (a &array) slice_clone(start, _end int) array {
|
|
mut end := _end
|
|
$if !no_bounds_checking? {
|
|
if start > end {
|
|
panic('array.slice: invalid slice index ($start > $end)')
|
|
}
|
|
if end > a.len {
|
|
panic('array.slice: slice bounds out of range ($end >= $a.len)')
|
|
}
|
|
if start < 0 {
|
|
panic('array.slice: slice bounds out of range ($start < 0)')
|
|
}
|
|
}
|
|
l := end - start
|
|
res := array{
|
|
element_size: a.element_size
|
|
data: byteptr(a.data) + start * a.element_size
|
|
len: l
|
|
cap: l
|
|
}
|
|
return res.clone()
|
|
}
|
|
|
|
// Private function. Used to implement assigment to the array element.
|
|
fn (a mut array) set(i int, val voidptr) {
|
|
$if !no_bounds_checking? {
|
|
if i < 0 || i >= a.len {
|
|
panic('array.set: index out of range (i == $i, a.len == $a.len)')
|
|
}
|
|
}
|
|
C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size)
|
|
}
|
|
|
|
fn (a mut array) push(val voidptr) {
|
|
a.ensure_cap(a.len + 1)
|
|
C.memcpy(byteptr(a.data) + a.element_size * a.len, val, a.element_size)
|
|
a.len++
|
|
}
|
|
|
|
// `val` is array.data
|
|
// TODO make private, right now it's used by strings.Builder
|
|
pub fn (a3 mut array) push_many(val voidptr, size int) {
|
|
if a3.data == val {
|
|
// handle `arr << arr`
|
|
copy := a3.clone()
|
|
a3.ensure_cap(a3.len + size)
|
|
//C.memcpy(a.data, copy.data, copy.element_size * copy.len)
|
|
C.memcpy(byteptr(a3.data) + a3.element_size * a3.len, copy.data, a3.element_size * size)
|
|
} else {
|
|
a3.ensure_cap(a3.len + size)
|
|
C.memcpy(byteptr(a3.data) + a3.element_size * a3.len, val, a3.element_size * size)
|
|
}
|
|
a3.len += size
|
|
}
|
|
|
|
// array.reverse returns a new array with the elements of
|
|
// the original array in reverse order.
|
|
pub fn (a array) reverse() array {
|
|
if a.len < 2 {
|
|
return a
|
|
}
|
|
arr := array{
|
|
len: a.len
|
|
cap: a.cap
|
|
element_size: a.element_size
|
|
data: vcalloc(a.cap * a.element_size)
|
|
}
|
|
for i in 0..a.len {
|
|
//C.memcpy(arr.data + i * arr.element_size, &a[a.len - 1 - i], arr.element_size)
|
|
C.memcpy(byteptr(arr.data) + i * arr.element_size, byteptr(a.data) + (a.len - 1 - i) * arr.element_size, arr.element_size)
|
|
}
|
|
return arr
|
|
}
|
|
|
|
// pub fn (a []int) free() {
|
|
[unsafe_fn]
|
|
pub fn (a array) free() {
|
|
// if a.is_slice {
|
|
// return
|
|
// }
|
|
C.free(a.data)
|
|
}
|
|
|
|
// []string.str returns a string representation of the array of strings
|
|
// => '["a", "b", "c"]'
|
|
pub fn (a []string) str() string {
|
|
mut sb := strings.new_builder(a.len * 3)
|
|
sb.write('[')
|
|
for i in 0..a.len {
|
|
val := a[i]
|
|
sb.write('"')
|
|
sb.write(val)
|
|
sb.write('"')
|
|
if i < a.len - 1 {
|
|
sb.write(', ')
|
|
}
|
|
}
|
|
sb.write(']')
|
|
return sb.str()
|
|
}
|
|
|
|
// []byte.hex returns a string with the hexadecimal representation
|
|
// of the byte elements of the array
|
|
pub fn (b []byte) hex() string {
|
|
mut hex := malloc(b.len * 2 + 1)
|
|
mut dst_i := 0
|
|
for i in b {
|
|
n0 := i >> 4
|
|
hex[dst_i++] = if n0 < 10 { n0 + `0` } else { n0 + 87 }
|
|
n1 := i & 0xF
|
|
hex[dst_i++] = if n1 < 10 { n1 + `0` } else { n1 + 87 }
|
|
}
|
|
hex[dst_i] = `\0`
|
|
return tos(hex,dst_i)
|
|
}
|
|
|
|
// copy copies the `src` byte array elements to the `dst` byte array.
|
|
// The number of the elements copied is the minimum of the length of both arrays.
|
|
// Returns the number of elements copied.
|
|
// TODO: implement for all types
|
|
pub fn copy(dst, src []byte) int {
|
|
if dst.len > 0 && src.len > 0 {
|
|
mut min := 0
|
|
min = if dst.len < src.len { dst.len } else { src.len }
|
|
C.memcpy(byteptr(dst.data), src[..min].data, dst.element_size * min)
|
|
return min
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Private function. Comparator for int type.
|
|
fn compare_ints(a, b &int) int {
|
|
if *a < *b {
|
|
return -1
|
|
}
|
|
if *a > *b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// []int.sort sorts array of int in place in ascending order.
|
|
pub fn (a mut []int) sort() {
|
|
a.sort_with_compare(compare_ints)
|
|
}
|
|
|
|
// []string.index returns the index of the first element equal to the given value,
|
|
// or -1 if the value is not found in the array.
|
|
pub fn (a []string) index(v string) int {
|
|
for i in 0..a.len {
|
|
if a[i] == v {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// []int.index returns the index of the first element equal to the given value,
|
|
// or -1 if the value is not found in the array.
|
|
pub fn (a []int) index(v int) int {
|
|
for i in 0..a.len {
|
|
if a[i] == v {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// []byte.index returns the index of the first element equal to the given value,
|
|
// or -1 if the value is not found in the array.
|
|
pub fn (a []byte) index(v byte) int {
|
|
for i in 0..a.len {
|
|
if a[i] == v {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// []char.index returns the index of the first element equal to the given value,
|
|
// or -1 if the value is not found in the array.
|
|
// TODO is `char` type yet in the language?
|
|
pub fn (a []char) index(v char) int {
|
|
for i in 0..a.len {
|
|
if a[i] == v {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// []int.reduce executes a given reducer function on each element of the array,
|
|
// resulting in a single output value.
|
|
pub fn (a []int) reduce(iter fn(accum, curr int)int, accum_start int) int {
|
|
mut accum_ := accum_start
|
|
for i in a {
|
|
accum_ = iter(accum_, i)
|
|
}
|
|
|
|
return accum_
|
|
}
|
|
|
|
// array_eq<T> checks if two arrays contain all the same elements in the same order.
|
|
// []int == []int (also for: i64, f32, f64, byte, string)
|
|
/*
|
|
fn array_eq<T>(a1, a2 []T) bool {
|
|
if a1.len != a2.len {
|
|
return false
|
|
}
|
|
for i in 0..a1.len {
|
|
if a1[i] != a2[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
pub fn (a []int) eq(a2 []int) bool {
|
|
return array_eq(a, a2)
|
|
}
|
|
|
|
pub fn (a []i64) eq(a2 []i64) bool {
|
|
return array_eq(a, a2)
|
|
}
|
|
|
|
|
|
pub fn (a []byte) eq(a2 []byte) bool {
|
|
return array_eq(a, a2)
|
|
}
|
|
|
|
pub fn (a []f32) eq(a2 []f32) bool {
|
|
return array_eq(a, a2)
|
|
}
|
|
*/
|
|
|
|
pub fn (a1 []string) eq(a2 []string) bool {
|
|
//return array_eq(a, a2)
|
|
if a1.len != a2.len {
|
|
return false
|
|
}
|
|
for i in 0..a1.len {
|
|
if a1[i] != a2[i] {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// compare_i64 for []f64 sort_with_compare()
|
|
// sort []i64 with quicksort
|
|
// usage :
|
|
// mut x := [i64(100),10,70,28,92]
|
|
// x.sort_with_compare(compare_i64)
|
|
// println(x) // Sorted i64 Array
|
|
// output:
|
|
// [10, 28, 70, 92, 100]
|
|
pub fn compare_i64(a, b &i64) int {
|
|
if *a < *b {
|
|
return -1
|
|
}
|
|
if *a > *b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// compare_f64 for []f64 sort_with_compare()
|
|
// ref. compare_i64(...)
|
|
pub fn compare_f64(a, b &f64) int {
|
|
if *a < *b {
|
|
return -1
|
|
}
|
|
if *a > *b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// compare_f32 for []f32 sort_with_compare()
|
|
// ref. compare_i64(...)
|
|
pub fn compare_f32(a, b &f32) int {
|
|
if *a < *b {
|
|
return -1
|
|
}
|
|
if *a > *b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// a.pointers() returns a new array, where each element
|
|
// is the address of the corresponding element in a.
|
|
pub fn (a array) pointers() []voidptr {
|
|
mut res := []voidptr{}
|
|
for i in 0..a.len {
|
|
res << byteptr(a.data) + i * a.element_size
|
|
}
|
|
return res
|
|
}
|