mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
298 lines
11 KiB
C
298 lines
11 KiB
C
|
#include "network.h"
|
||
|
#include "detection_layer.h"
|
||
|
#include "cost_layer.h"
|
||
|
#include "utils.h"
|
||
|
#include "parser.h"
|
||
|
#include "box.h"
|
||
|
|
||
|
|
||
|
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
|
||
|
|
||
|
void draw_coco(image im, float *box, int side, int objectness, char *label)
|
||
|
{
|
||
|
int classes = 80;
|
||
|
int elems = 4+classes+objectness;
|
||
|
int j;
|
||
|
int r, c;
|
||
|
|
||
|
for(r = 0; r < side; ++r){
|
||
|
for(c = 0; c < side; ++c){
|
||
|
j = (r*side + c) * elems;
|
||
|
float scale = 1;
|
||
|
if(objectness) scale = 1 - box[j++];
|
||
|
int class = max_index(box+j, classes);
|
||
|
if(scale * box[j+class] > 0.2){
|
||
|
int width = box[j+class]*5 + 1;
|
||
|
printf("%f %s\n", scale * box[j+class], coco_classes[class]);
|
||
|
float red = get_color(0,class,classes);
|
||
|
float green = get_color(1,class,classes);
|
||
|
float blue = get_color(2,class,classes);
|
||
|
|
||
|
j += classes;
|
||
|
float x = box[j+0];
|
||
|
float y = box[j+1];
|
||
|
x = (x+c)/side;
|
||
|
y = (y+r)/side;
|
||
|
float w = box[j+2]; //*maxwidth;
|
||
|
float h = box[j+3]; //*maxheight;
|
||
|
h = h*h;
|
||
|
w = w*w;
|
||
|
|
||
|
int left = (x-w/2)*im.w;
|
||
|
int right = (x+w/2)*im.w;
|
||
|
int top = (y-h/2)*im.h;
|
||
|
int bot = (y+h/2)*im.h;
|
||
|
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
show_image(im, label);
|
||
|
}
|
||
|
|
||
|
void train_coco(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
char *train_images = "/home/pjreddie/data/coco/train.txt";
|
||
|
char *backup_directory = "/home/pjreddie/backup/";
|
||
|
srand(time(0));
|
||
|
data_seed = time(0);
|
||
|
char *base = basecfg(cfgfile);
|
||
|
printf("%s\n", base);
|
||
|
float avg_loss = -1;
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
detection_layer layer = get_network_detection_layer(net);
|
||
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||
|
int imgs = 128;
|
||
|
int i = net.seen/imgs;
|
||
|
data train, buffer;
|
||
|
|
||
|
int classes = layer.classes;
|
||
|
int background = layer.objectness;
|
||
|
int side = sqrt(get_detection_layer_locations(layer));
|
||
|
|
||
|
char **paths;
|
||
|
list *plist = get_paths(train_images);
|
||
|
int N = plist->size;
|
||
|
|
||
|
paths = (char **)list_to_array(plist);
|
||
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||
|
clock_t time;
|
||
|
while(i*imgs < N*120){
|
||
|
i += 1;
|
||
|
time=clock();
|
||
|
pthread_join(load_thread, 0);
|
||
|
train = buffer;
|
||
|
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||
|
|
||
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||
|
|
||
|
/*
|
||
|
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||
|
image copy = copy_image(im);
|
||
|
draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth");
|
||
|
cvWaitKey(0);
|
||
|
free_image(copy);
|
||
|
*/
|
||
|
|
||
|
time=clock();
|
||
|
float loss = train_network(net, train);
|
||
|
net.seen += imgs;
|
||
|
if (avg_loss < 0) avg_loss = loss;
|
||
|
avg_loss = avg_loss*.9 + loss*.1;
|
||
|
|
||
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||
|
if((i-1)*imgs <= 80*N && i*imgs > N*80){
|
||
|
fprintf(stderr, "First stage done.\n");
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
|
||
|
save_weights(net, buff);
|
||
|
return;
|
||
|
}
|
||
|
if(i%1000==0 || 1){
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
free_data(train);
|
||
|
return;
|
||
|
}
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
|
||
|
void convert_cocos(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
|
||
|
{
|
||
|
int i,j;
|
||
|
int per_box = 4+classes+(background || objectness);
|
||
|
for (i = 0; i < num_boxes*num_boxes; ++i){
|
||
|
float scale = 1;
|
||
|
if(objectness) scale = 1-predictions[i*per_box];
|
||
|
int offset = i*per_box+(background||objectness);
|
||
|
for(j = 0; j < classes; ++j){
|
||
|
float prob = scale*predictions[offset+j];
|
||
|
probs[i][j] = (prob > thresh) ? prob : 0;
|
||
|
}
|
||
|
int row = i / num_boxes;
|
||
|
int col = i % num_boxes;
|
||
|
offset += classes;
|
||
|
boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
|
||
|
boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
|
||
|
boxes[i].w = pow(predictions[offset + 2], 2) * w;
|
||
|
boxes[i].h = pow(predictions[offset + 3], 2) * h;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void print_cocos(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||
|
{
|
||
|
int i, j;
|
||
|
for(i = 0; i < num_boxes*num_boxes; ++i){
|
||
|
float xmin = boxes[i].x - boxes[i].w/2.;
|
||
|
float xmax = boxes[i].x + boxes[i].w/2.;
|
||
|
float ymin = boxes[i].y - boxes[i].h/2.;
|
||
|
float ymax = boxes[i].y + boxes[i].h/2.;
|
||
|
|
||
|
if (xmin < 0) xmin = 0;
|
||
|
if (ymin < 0) ymin = 0;
|
||
|
if (xmax > w) xmax = w;
|
||
|
if (ymax > h) ymax = h;
|
||
|
|
||
|
for(j = 0; j < classes; ++j){
|
||
|
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
||
|
xmin, ymin, xmax, ymax);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void validate_coco(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
set_batch_network(&net, 1);
|
||
|
detection_layer layer = get_network_detection_layer(net);
|
||
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||
|
srand(time(0));
|
||
|
|
||
|
char *base = "results/comp4_det_test_";
|
||
|
list *plist = get_paths("data/voc.2012test.list");
|
||
|
char **paths = (char **)list_to_array(plist);
|
||
|
|
||
|
int classes = layer.classes;
|
||
|
int objectness = layer.objectness;
|
||
|
int background = layer.background;
|
||
|
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
||
|
|
||
|
int j;
|
||
|
FILE **fps = calloc(classes, sizeof(FILE *));
|
||
|
for(j = 0; j < classes; ++j){
|
||
|
char buff[1024];
|
||
|
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
|
||
|
fps[j] = fopen(buff, "w");
|
||
|
}
|
||
|
box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
|
||
|
float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
|
||
|
for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||
|
|
||
|
int m = plist->size;
|
||
|
int i=0;
|
||
|
int t;
|
||
|
|
||
|
float thresh = .001;
|
||
|
int nms = 1;
|
||
|
float iou_thresh = .5;
|
||
|
|
||
|
int nthreads = 8;
|
||
|
image *val = calloc(nthreads, sizeof(image));
|
||
|
image *val_resized = calloc(nthreads, sizeof(image));
|
||
|
image *buf = calloc(nthreads, sizeof(image));
|
||
|
image *buf_resized = calloc(nthreads, sizeof(image));
|
||
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
||
|
for(t = 0; t < nthreads; ++t){
|
||
|
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||
|
}
|
||
|
time_t start = time(0);
|
||
|
for(i = nthreads; i < m+nthreads; i += nthreads){
|
||
|
fprintf(stderr, "%d\n", i);
|
||
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
||
|
pthread_join(thr[t], 0);
|
||
|
val[t] = buf[t];
|
||
|
val_resized[t] = buf_resized[t];
|
||
|
}
|
||
|
for(t = 0; t < nthreads && i+t < m; ++t){
|
||
|
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||
|
}
|
||
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
||
|
char *path = paths[i+t-nthreads];
|
||
|
char *id = basecfg(path);
|
||
|
float *X = val_resized[t].data;
|
||
|
float *predictions = network_predict(net, X);
|
||
|
int w = val[t].w;
|
||
|
int h = val[t].h;
|
||
|
convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
|
||
|
if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
|
||
|
print_cocos(fps, id, boxes, probs, num_boxes, classes, w, h);
|
||
|
free(id);
|
||
|
free_image(val[t]);
|
||
|
free_image(val_resized[t]);
|
||
|
}
|
||
|
}
|
||
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||
|
}
|
||
|
|
||
|
void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||
|
{
|
||
|
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
detection_layer layer = get_network_detection_layer(net);
|
||
|
set_batch_network(&net, 1);
|
||
|
srand(2222222);
|
||
|
clock_t time;
|
||
|
char input[256];
|
||
|
while(1){
|
||
|
if(filename){
|
||
|
strncpy(input, filename, 256);
|
||
|
} else {
|
||
|
printf("Enter Image Path: ");
|
||
|
fflush(stdout);
|
||
|
fgets(input, 256, stdin);
|
||
|
strtok(input, "\n");
|
||
|
}
|
||
|
image im = load_image_color(input,0,0);
|
||
|
image sized = resize_image(im, net.w, net.h);
|
||
|
float *X = sized.data;
|
||
|
time=clock();
|
||
|
float *predictions = network_predict(net, X);
|
||
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||
|
draw_coco(im, predictions, 7, layer.objectness, "predictions");
|
||
|
free_image(im);
|
||
|
free_image(sized);
|
||
|
#ifdef OPENCV
|
||
|
cvWaitKey(0);
|
||
|
cvDestroyAllWindows();
|
||
|
#endif
|
||
|
if (filename) break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void run_coco(int argc, char **argv)
|
||
|
{
|
||
|
if(argc < 4){
|
||
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
char *cfg = argv[3];
|
||
|
char *weights = (argc > 4) ? argv[4] : 0;
|
||
|
char *filename = (argc > 5) ? argv[5]: 0;
|
||
|
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
|
||
|
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
||
|
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
||
|
}
|