mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added COCO, fixed memory leaks
This commit is contained in:
parent
98813ad520
commit
846b3b4366
2
Makefile
2
Makefile
@ -34,7 +34,7 @@ CFLAGS+= -DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
endif
|
||||
|
20
src/box.c
20
src/box.c
@ -211,3 +211,23 @@ dbox diou(box a, box b)
|
||||
return dd;
|
||||
}
|
||||
|
||||
void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh)
|
||||
{
|
||||
int i, j, k;
|
||||
for(i = 0; i < num_boxes*num_boxes; ++i){
|
||||
int any = 0;
|
||||
for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0);
|
||||
if(!any) {
|
||||
continue;
|
||||
}
|
||||
for(j = i+1; j < num_boxes*num_boxes; ++j){
|
||||
if (box_iou(boxes[i], boxes[j]) > thresh){
|
||||
for(k = 0; k < classes; ++k){
|
||||
if (probs[i][k] < probs[j][k]) probs[i][k] = 0;
|
||||
else probs[j][k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,5 +11,6 @@ typedef struct{
|
||||
|
||||
float box_iou(box a, box b);
|
||||
dbox diou(box a, box b);
|
||||
void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh);
|
||||
|
||||
#endif
|
||||
|
297
src/coco.c
Normal file
297
src/coco.c
Normal file
@ -0,0 +1,297 @@
|
||||
#include "network.h"
|
||||
#include "detection_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
#include "box.h"
|
||||
|
||||
|
||||
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
|
||||
|
||||
void draw_coco(image im, float *box, int side, int objectness, char *label)
|
||||
{
|
||||
int classes = 80;
|
||||
int elems = 4+classes+objectness;
|
||||
int j;
|
||||
int r, c;
|
||||
|
||||
for(r = 0; r < side; ++r){
|
||||
for(c = 0; c < side; ++c){
|
||||
j = (r*side + c) * elems;
|
||||
float scale = 1;
|
||||
if(objectness) scale = 1 - box[j++];
|
||||
int class = max_index(box+j, classes);
|
||||
if(scale * box[j+class] > 0.2){
|
||||
int width = box[j+class]*5 + 1;
|
||||
printf("%f %s\n", scale * box[j+class], coco_classes[class]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
|
||||
j += classes;
|
||||
float x = box[j+0];
|
||||
float y = box[j+1];
|
||||
x = (x+c)/side;
|
||||
y = (y+r)/side;
|
||||
float w = box[j+2]; //*maxwidth;
|
||||
float h = box[j+3]; //*maxheight;
|
||||
h = h*h;
|
||||
w = w*w;
|
||||
|
||||
int left = (x-w/2)*im.w;
|
||||
int right = (x+w/2)*im.w;
|
||||
int top = (y-h/2)*im.h;
|
||||
int bot = (y+h/2)*im.h;
|
||||
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
show_image(im, label);
|
||||
}
|
||||
|
||||
void train_coco(char *cfgfile, char *weightfile)
|
||||
{
|
||||
char *train_images = "/home/pjreddie/data/coco/train.txt";
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 128;
|
||||
int i = net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
int classes = layer.classes;
|
||||
int background = layer.objectness;
|
||||
int side = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
char **paths;
|
||||
list *plist = get_paths(train_images);
|
||||
int N = plist->size;
|
||||
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
clock_t time;
|
||||
while(i*imgs < N*120){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
draw_coco(copy, train.y.vals[114], 7, layer.objectness, "truth");
|
||||
cvWaitKey(0);
|
||||
free_image(copy);
|
||||
*/
|
||||
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
net.seen += imgs;
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
if((i-1)*imgs <= 80*N && i*imgs > N*80){
|
||||
fprintf(stderr, "First stage done.\n");
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
return;
|
||||
}
|
||||
if(i%1000==0 || 1){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
free_data(train);
|
||||
return;
|
||||
}
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void convert_cocos(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
|
||||
{
|
||||
int i,j;
|
||||
int per_box = 4+classes+(background || objectness);
|
||||
for (i = 0; i < num_boxes*num_boxes; ++i){
|
||||
float scale = 1;
|
||||
if(objectness) scale = 1-predictions[i*per_box];
|
||||
int offset = i*per_box+(background||objectness);
|
||||
for(j = 0; j < classes; ++j){
|
||||
float prob = scale*predictions[offset+j];
|
||||
probs[i][j] = (prob > thresh) ? prob : 0;
|
||||
}
|
||||
int row = i / num_boxes;
|
||||
int col = i % num_boxes;
|
||||
offset += classes;
|
||||
boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
|
||||
boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
|
||||
boxes[i].w = pow(predictions[offset + 2], 2) * w;
|
||||
boxes[i].h = pow(predictions[offset + 3], 2) * h;
|
||||
}
|
||||
}
|
||||
|
||||
void print_cocos(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < num_boxes*num_boxes; ++i){
|
||||
float xmin = boxes[i].x - boxes[i].w/2.;
|
||||
float xmax = boxes[i].x + boxes[i].w/2.;
|
||||
float ymin = boxes[i].y - boxes[i].h/2.;
|
||||
float ymax = boxes[i].y + boxes[i].h/2.;
|
||||
|
||||
if (xmin < 0) xmin = 0;
|
||||
if (ymin < 0) ymin = 0;
|
||||
if (xmax > w) xmax = w;
|
||||
if (ymax > h) ymax = h;
|
||||
|
||||
for(j = 0; j < classes; ++j){
|
||||
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
||||
xmin, ymin, xmax, ymax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void validate_coco(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
char *base = "results/comp4_det_test_";
|
||||
list *plist = get_paths("data/voc.2012test.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
int classes = layer.classes;
|
||||
int objectness = layer.objectness;
|
||||
int background = layer.background;
|
||||
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
int j;
|
||||
FILE **fps = calloc(classes, sizeof(FILE *));
|
||||
for(j = 0; j < classes; ++j){
|
||||
char buff[1024];
|
||||
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
|
||||
fps[j] = fopen(buff, "w");
|
||||
}
|
||||
box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
|
||||
float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
|
||||
for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
|
||||
|
||||
int m = plist->size;
|
||||
int i=0;
|
||||
int t;
|
||||
|
||||
float thresh = .001;
|
||||
int nms = 1;
|
||||
float iou_thresh = .5;
|
||||
|
||||
int nthreads = 8;
|
||||
image *val = calloc(nthreads, sizeof(image));
|
||||
image *val_resized = calloc(nthreads, sizeof(image));
|
||||
image *buf = calloc(nthreads, sizeof(image));
|
||||
image *buf_resized = calloc(nthreads, sizeof(image));
|
||||
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
||||
for(t = 0; t < nthreads; ++t){
|
||||
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||||
}
|
||||
time_t start = time(0);
|
||||
for(i = nthreads; i < m+nthreads; i += nthreads){
|
||||
fprintf(stderr, "%d\n", i);
|
||||
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
||||
pthread_join(thr[t], 0);
|
||||
val[t] = buf[t];
|
||||
val_resized[t] = buf_resized[t];
|
||||
}
|
||||
for(t = 0; t < nthreads && i+t < m; ++t){
|
||||
thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
|
||||
}
|
||||
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
||||
char *path = paths[i+t-nthreads];
|
||||
char *id = basecfg(path);
|
||||
float *X = val_resized[t].data;
|
||||
float *predictions = network_predict(net, X);
|
||||
int w = val[t].w;
|
||||
int h = val[t].h;
|
||||
convert_cocos(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
|
||||
if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
|
||||
print_cocos(fps, id, boxes, probs, num_boxes, classes, w, h);
|
||||
free(id);
|
||||
free_image(val[t]);
|
||||
free_image(val_resized[t]);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
||||
}
|
||||
|
||||
void test_coco(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
char input[256];
|
||||
while(1){
|
||||
if(filename){
|
||||
strncpy(input, filename, 256);
|
||||
} else {
|
||||
printf("Enter Image Path: ");
|
||||
fflush(stdout);
|
||||
fgets(input, 256, stdin);
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input,0,0);
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
float *X = sized.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
draw_coco(im, predictions, 7, layer.objectness, "predictions");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
#ifdef OPENCV
|
||||
cvWaitKey(0);
|
||||
cvDestroyAllWindows();
|
||||
#endif
|
||||
if (filename) break;
|
||||
}
|
||||
}
|
||||
|
||||
void run_coco(int argc, char **argv)
|
||||
{
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
}
|
||||
|
||||
char *cfg = argv[3];
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
char *filename = (argc > 5) ? argv[5]: 0;
|
||||
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
||||
}
|
@ -242,6 +242,19 @@ void rgbgr_filters(convolutional_layer l)
|
||||
}
|
||||
}
|
||||
|
||||
void rescale_filters(convolutional_layer l, float scale, float trans)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < l.n; ++i){
|
||||
image im = get_convolutional_filter(l, i);
|
||||
if (im.c == 3) {
|
||||
scale_image(im, scale);
|
||||
float sum = sum_array(im.data, im.w*im.h*im.c);
|
||||
l.biases[i] += sum*trans;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
image *get_filters(convolutional_layer l)
|
||||
{
|
||||
image *filters = calloc(l.n, sizeof(image));
|
||||
|
@ -38,6 +38,8 @@ image get_convolutional_filter(convolutional_layer layer, int i);
|
||||
|
||||
int convolutional_out_height(convolutional_layer layer);
|
||||
int convolutional_out_width(convolutional_layer layer);
|
||||
void rescale_filters(convolutional_layer l, float scale, float trans);
|
||||
void rgbgr_filters(convolutional_layer l);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -11,6 +11,7 @@
|
||||
|
||||
extern void run_imagenet(int argc, char **argv);
|
||||
extern void run_detection(int argc, char **argv);
|
||||
extern void run_coco(int argc, char **argv);
|
||||
extern void run_writing(int argc, char **argv);
|
||||
extern void run_captcha(int argc, char **argv);
|
||||
extern void run_nightmare(int argc, char **argv);
|
||||
@ -40,7 +41,24 @@ void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
||||
}
|
||||
|
||||
#include "convolutional_layer.h"
|
||||
void rgbgr_filters(convolutional_layer l);
|
||||
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
rescale_filters(l, 2, -.5);
|
||||
break;
|
||||
}
|
||||
}
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
|
||||
{
|
||||
gpu_index = -1;
|
||||
@ -95,6 +113,8 @@ int main(int argc, char **argv)
|
||||
run_imagenet(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "detection")){
|
||||
run_detection(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "coco")){
|
||||
run_coco(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "writing")){
|
||||
run_writing(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "test")){
|
||||
@ -107,6 +127,8 @@ int main(int argc, char **argv)
|
||||
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "rgbgr")){
|
||||
rgbgr_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "rescale")){
|
||||
rescale_net(argv[2], argv[3], argv[4]);
|
||||
} else if (0 == strcmp(argv[1], "partial")){
|
||||
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
|
||||
} else if (0 == strcmp(argv[1], "visualize")){
|
||||
|
@ -143,26 +143,6 @@ void convert_detections(float *predictions, int classes, int objectness, int bac
|
||||
}
|
||||
}
|
||||
|
||||
void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh)
|
||||
{
|
||||
int i, j, k;
|
||||
for(i = 0; i < num_boxes*num_boxes; ++i){
|
||||
int any = 0;
|
||||
for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0);
|
||||
if(!any) {
|
||||
continue;
|
||||
}
|
||||
for(j = i+1; j < num_boxes*num_boxes; ++j){
|
||||
if (box_iou(boxes[i], boxes[j]) > thresh){
|
||||
for(k = 0; k < classes; ++k){
|
||||
if (probs[i][k] < probs[j][k]) probs[i][k] = 0;
|
||||
else probs[j][k] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
||||
{
|
||||
int i, j;
|
||||
|
@ -204,6 +204,7 @@ void backward_detection_layer_gpu(detection_layer l, network_state state)
|
||||
backward_detection_layer(l, cpu_state);
|
||||
cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
|
||||
|
||||
if (truth_cpu) free(truth_cpu);
|
||||
free(in_cpu);
|
||||
free(delta_cpu);
|
||||
}
|
||||
|
@ -249,6 +249,7 @@ void save_image(image im, char *name)
|
||||
}
|
||||
}
|
||||
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
|
||||
free(data);
|
||||
if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user