2013-11-04 23:11:01 +04:00
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
2013-11-07 04:09:41 +04:00
|
|
|
#include "parser.h"
|
2013-11-13 22:50:38 +04:00
|
|
|
#include "data.h"
|
|
|
|
#include "matrix.h"
|
2013-11-04 23:11:01 +04:00
|
|
|
|
|
|
|
#include <time.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
void test_convolve()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
//show_image_layers(dog, "Dog");
|
|
|
|
printf("dog channels %d\n", dog.c);
|
|
|
|
image kernel = make_random_image(3,3,dog.c);
|
|
|
|
image edge = make_image(dog.h, dog.w, 1);
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1000; ++i){
|
|
|
|
convolve(dog, kernel, 1, 0, edge);
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
show_image_layers(edge, "Test Convolve");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_color()
|
|
|
|
{
|
|
|
|
image dog = load_image("test_color.png");
|
|
|
|
show_image_layers(dog, "Test Color");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_convolutional_layer()
|
|
|
|
{
|
|
|
|
srand(0);
|
2013-11-06 22:37:37 +04:00
|
|
|
image dog = load_image("dog.jpg");
|
2013-11-04 23:11:01 +04:00
|
|
|
int i;
|
2013-11-06 22:37:37 +04:00
|
|
|
int n = 3;
|
2013-11-04 23:11:01 +04:00
|
|
|
int stride = 1;
|
2013-11-06 22:37:37 +04:00
|
|
|
int size = 3;
|
2013-11-13 22:50:38 +04:00
|
|
|
convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride, RELU);
|
2013-11-04 23:11:01 +04:00
|
|
|
char buff[256];
|
|
|
|
for(i = 0; i < n; ++i) {
|
|
|
|
sprintf(buff, "Kernel %d", i);
|
|
|
|
show_image(layer.kernels[i], buff);
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
forward_convolutional_layer(layer, dog.data);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
image output = get_convolutional_image(layer);
|
|
|
|
maxpool_layer mlayer = *make_maxpool_layer(output.h, output.w, output.c, 2);
|
|
|
|
forward_maxpool_layer(mlayer, layer.output);
|
2013-11-04 23:11:01 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
show_image_layers(get_maxpool_image(mlayer), "Test Maxpool Layer");
|
2013-11-04 23:11:01 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
void test_load()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
show_image(dog, "Test Load");
|
|
|
|
show_image_layers(dog, "Test Load");
|
|
|
|
}
|
|
|
|
void test_upsample()
|
|
|
|
{
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
int n = 3;
|
|
|
|
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
|
|
|
upsample_image(dog, n, up);
|
|
|
|
show_image(up, "Test Upsample");
|
|
|
|
show_image_layers(up, "Test Upsample");
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_rotate()
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
image dog = load_image("dog.jpg");
|
|
|
|
clock_t start = clock(), end;
|
|
|
|
for(i = 0; i < 1001; ++i){
|
|
|
|
rotate_image(dog);
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
show_image(dog, "Test Rotate");
|
|
|
|
|
|
|
|
image random = make_random_image(3,3,3);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
rotate_image(random);
|
|
|
|
show_image(random, "Test Rotate Random");
|
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_parser()
|
2013-11-06 22:37:37 +04:00
|
|
|
{
|
2013-11-13 22:50:38 +04:00
|
|
|
network net = parse_network_cfg("test_parser.cfg");
|
|
|
|
double input[1];
|
2013-11-06 22:37:37 +04:00
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
double avgerr = 0;
|
|
|
|
while(1){
|
|
|
|
double v = ((double)rand()/RAND_MAX);
|
|
|
|
double truth = v*v;
|
2013-11-13 22:50:38 +04:00
|
|
|
input[0] = v;
|
|
|
|
forward_network(net, input);
|
2013-11-06 22:37:37 +04:00
|
|
|
double *out = get_network_output(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
double *delta = get_network_delta(net);
|
2013-11-06 22:37:37 +04:00
|
|
|
double err = pow((out[0]-truth),2.);
|
|
|
|
avgerr = .99 * avgerr + .01 * err;
|
|
|
|
//if(++count % 100000 == 0) printf("%f\n", avgerr);
|
2013-11-13 22:50:38 +04:00
|
|
|
if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
|
|
|
delta[0] = truth - out[0];
|
|
|
|
learn_network(net, input);
|
2013-11-06 22:37:37 +04:00
|
|
|
update_network(net, .001);
|
|
|
|
}
|
2013-11-13 22:50:38 +04:00
|
|
|
}
|
2013-11-06 22:37:37 +04:00
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_data()
|
|
|
|
{
|
|
|
|
batch train = random_batch("train_paths.txt", 101);
|
|
|
|
show_image(train.images[0], "Test Data Loading");
|
|
|
|
show_image(train.images[100], "Test Data Loading");
|
|
|
|
show_image(train.images[10], "Test Data Loading");
|
|
|
|
free_batch(train);
|
2013-11-06 22:37:37 +04:00
|
|
|
}
|
|
|
|
|
2013-11-13 22:50:38 +04:00
|
|
|
void test_train()
|
2013-11-07 04:09:41 +04:00
|
|
|
{
|
|
|
|
network net = parse_network_cfg("test.cfg");
|
2013-11-13 22:50:38 +04:00
|
|
|
srand(0);
|
|
|
|
//visualize_network(net);
|
|
|
|
int i = 1000;
|
|
|
|
//while(1){
|
|
|
|
while(i > 0){
|
|
|
|
batch train = random_batch("train_paths.txt", 100);
|
|
|
|
train_network_batch(net, train);
|
|
|
|
//show_image_layers(get_network_image(net), "hey");
|
|
|
|
//visualize_network(net);
|
|
|
|
//cvWaitKey(0);
|
|
|
|
free_batch(train);
|
|
|
|
--i;
|
|
|
|
}
|
|
|
|
//}
|
|
|
|
}
|
|
|
|
|
|
|
|
double error_network(network net, matrix m, double *truth)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int correct = 0;
|
|
|
|
for(i = 0; i < m.rows; ++i){
|
|
|
|
forward_network(net, m.vals[i]);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
double err = truth[i] - out[0];
|
|
|
|
if(fabs(err) < .5) ++correct;
|
|
|
|
}
|
|
|
|
return (double)correct/m.rows;
|
|
|
|
}
|
|
|
|
|
|
|
|
void classify_random_filters()
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg("random_filter_finish.cfg");
|
|
|
|
matrix m = csv_to_matrix("train.csv");
|
|
|
|
matrix ho = hold_out_matrix(&m, 2500);
|
|
|
|
double *truth = pop_column(&m, 0);
|
|
|
|
double *ho_truth = pop_column(&ho, 0);
|
|
|
|
int i;
|
|
|
|
clock_t start = clock(), end;
|
2013-11-07 04:09:41 +04:00
|
|
|
int count = 0;
|
2013-11-13 22:50:38 +04:00
|
|
|
while(++count <= 300){
|
|
|
|
for(i = 0; i < m.rows; ++i){
|
|
|
|
int index = rand()%m.rows;
|
|
|
|
//image p = double_to_image(1690,1,1,m.vals[index]);
|
|
|
|
//normalize_image(p);
|
|
|
|
forward_network(net, m.vals[index]);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
double *delta = get_network_delta(net);
|
|
|
|
//printf("%f\n", out[0]);
|
|
|
|
delta[0] = truth[index] - out[0];
|
|
|
|
// printf("%f\n", delta[0]);
|
|
|
|
//printf("%f %f\n", truth[index], out[0]);
|
|
|
|
learn_network(net, m.vals[index]);
|
|
|
|
update_network(net, .000005);
|
|
|
|
}
|
|
|
|
double test_acc = error_network(net, m, truth);
|
|
|
|
double valid_acc = error_network(net, ho, ho_truth);
|
|
|
|
printf("%f, %f\n", test_acc, valid_acc);
|
|
|
|
fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
|
|
|
|
//if(valid_acc > .70) break;
|
|
|
|
}
|
|
|
|
end = clock();
|
|
|
|
FILE *fp = fopen("submission/out.txt", "w");
|
|
|
|
matrix test = csv_to_matrix("test.csv");
|
|
|
|
truth = pop_column(&test, 0);
|
|
|
|
for(i = 0; i < test.rows; ++i){
|
|
|
|
forward_network(net, test.vals[i]);
|
2013-11-07 04:09:41 +04:00
|
|
|
double *out = get_network_output(net);
|
2013-11-13 22:50:38 +04:00
|
|
|
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
|
|
|
|
else fprintf(fp, "1\n");
|
|
|
|
}
|
|
|
|
fclose(fp);
|
|
|
|
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_random_filters()
|
|
|
|
{
|
|
|
|
FILE *file = fopen("test.csv", "w");
|
|
|
|
int i,j,k;
|
|
|
|
srand(0);
|
|
|
|
network net = parse_network_cfg("test_random_filter.cfg");
|
|
|
|
for(i = 0; i < 100; ++i){
|
|
|
|
printf("%d\n", i);
|
|
|
|
batch part = get_batch("test_paths.txt", i, 100);
|
|
|
|
for(j = 0; j < part.n; ++j){
|
|
|
|
forward_network(net, part.images[j].data);
|
|
|
|
double *out = get_network_output(net);
|
|
|
|
fprintf(file, "%f", part.truth[j][0]);
|
|
|
|
for(k = 0; k < get_network_output_size(net); ++k){
|
|
|
|
fprintf(file, ",%f", out[k]);
|
|
|
|
}
|
|
|
|
fprintf(file, "\n");
|
|
|
|
}
|
|
|
|
free_batch(part);
|
2013-11-07 04:09:41 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-04 23:11:01 +04:00
|
|
|
int main()
|
|
|
|
{
|
2013-11-13 22:50:38 +04:00
|
|
|
//classify_random_filters();
|
|
|
|
//test_random_filters();
|
|
|
|
test_train();
|
|
|
|
//test_parser();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_backpropagate();
|
2013-11-07 04:09:41 +04:00
|
|
|
//test_ann();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolve();
|
|
|
|
//test_upsample();
|
|
|
|
//test_rotate();
|
|
|
|
//test_load();
|
2013-11-06 22:37:37 +04:00
|
|
|
//test_network();
|
2013-11-04 23:11:01 +04:00
|
|
|
//test_convolutional_layer();
|
|
|
|
//test_color();
|
|
|
|
cvWaitKey(0);
|
|
|
|
return 0;
|
|
|
|
}
|