mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Loading may or may not work. But probably.
This commit is contained in:
parent
9b1774bd39
commit
d7286c2732
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,6 +4,7 @@
|
||||
images/
|
||||
opencv/
|
||||
convnet/
|
||||
decaf/
|
||||
cnn
|
||||
|
||||
# OS Generated #
|
||||
|
2
Makefile
2
Makefile
@ -4,7 +4,7 @@ CFLAGS=-Wall `pkg-config --cflags opencv` -O0 -g
|
||||
LDFLAGS=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
|
||||
OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o
|
||||
OBJ=network.o image.o tests.o convolutional_layer.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o
|
||||
|
||||
all: cnn
|
||||
|
||||
|
@ -1,6 +1,17 @@
|
||||
#include "activations.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
ACTIVATION get_activation(char *s)
|
||||
{
|
||||
if (strcmp(s, "sigmoid")==0) return SIGMOID;
|
||||
if (strcmp(s, "relu")==0) return RELU;
|
||||
if (strcmp(s, "identity")==0) return IDENTITY;
|
||||
fprintf(stderr, "Couldn't find activation function %s, going with ReLU\n", s);
|
||||
return RELU;
|
||||
}
|
||||
|
||||
double identity_activation(double x)
|
||||
{
|
||||
|
@ -1,10 +1,17 @@
|
||||
#ifndef ACTIVATIONS_H
|
||||
#define ACTIVATIONS_H
|
||||
|
||||
typedef enum{
|
||||
SIGMOID, RELU, IDENTITY
|
||||
}ACTIVATOR_TYPE;
|
||||
}ACTIVATION;
|
||||
|
||||
ACTIVATION get_activation(char *s);
|
||||
double relu_activation(double x);
|
||||
double relu_gradient(double x);
|
||||
double sigmoid_activation(double x);
|
||||
double sigmoid_gradient(double x);
|
||||
double identity_activation(double x);
|
||||
double identity_gradient(double x);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -4,34 +4,34 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator)
|
||||
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator)
|
||||
{
|
||||
int i;
|
||||
connected_layer layer;
|
||||
layer.inputs = inputs;
|
||||
layer.outputs = outputs;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
|
||||
layer.output = calloc(outputs, sizeof(double*));
|
||||
layer->output = calloc(outputs, sizeof(double*));
|
||||
|
||||
layer.weight_updates = calloc(inputs*outputs, sizeof(double));
|
||||
layer.weights = calloc(inputs*outputs, sizeof(double));
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(double));
|
||||
layer->weights = calloc(inputs*outputs, sizeof(double));
|
||||
for(i = 0; i < inputs*outputs; ++i)
|
||||
layer.weights[i] = .5 - (double)rand()/RAND_MAX;
|
||||
layer->weights[i] = .5 - (double)rand()/RAND_MAX;
|
||||
|
||||
layer.bias_updates = calloc(outputs, sizeof(double));
|
||||
layer.biases = calloc(outputs, sizeof(double));
|
||||
layer->bias_updates = calloc(outputs, sizeof(double));
|
||||
layer->biases = calloc(outputs, sizeof(double));
|
||||
for(i = 0; i < outputs; ++i)
|
||||
layer.biases[i] = (double)rand()/RAND_MAX;
|
||||
layer->biases[i] = (double)rand()/RAND_MAX;
|
||||
|
||||
if(activator == SIGMOID){
|
||||
layer.activation = sigmoid_activation;
|
||||
layer.gradient = sigmoid_gradient;
|
||||
layer->activation = sigmoid_activation;
|
||||
layer->gradient = sigmoid_gradient;
|
||||
}else if(activator == RELU){
|
||||
layer.activation = relu_activation;
|
||||
layer.gradient = relu_gradient;
|
||||
layer->activation = relu_activation;
|
||||
layer->gradient = relu_gradient;
|
||||
}else if(activator == IDENTITY){
|
||||
layer.activation = identity_activation;
|
||||
layer.gradient = identity_gradient;
|
||||
layer->activation = identity_activation;
|
||||
layer->gradient = identity_gradient;
|
||||
}
|
||||
|
||||
return layer;
|
||||
|
@ -16,7 +16,7 @@ typedef struct{
|
||||
double (* gradient)();
|
||||
} connected_layer;
|
||||
|
||||
connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator);
|
||||
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activator);
|
||||
|
||||
void run_connected_layer(double *input, connected_layer layer);
|
||||
void learn_connected_layer(double *input, connected_layer layer);
|
||||
|
@ -10,20 +10,20 @@ double convolution_gradient(double x)
|
||||
return (x>=0);
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
|
||||
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
|
||||
{
|
||||
int i;
|
||||
convolutional_layer layer;
|
||||
layer.n = n;
|
||||
layer.stride = stride;
|
||||
layer.kernels = calloc(n, sizeof(image));
|
||||
layer.kernel_updates = calloc(n, sizeof(image));
|
||||
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
||||
layer->n = n;
|
||||
layer->stride = stride;
|
||||
layer->kernels = calloc(n, sizeof(image));
|
||||
layer->kernel_updates = calloc(n, sizeof(image));
|
||||
for(i = 0; i < n; ++i){
|
||||
layer.kernels[i] = make_random_kernel(size, c);
|
||||
layer.kernel_updates[i] = make_random_kernel(size, c);
|
||||
layer->kernels[i] = make_random_kernel(size, c);
|
||||
layer->kernel_updates[i] = make_random_kernel(size, c);
|
||||
}
|
||||
layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
|
||||
layer.upsampled = make_image(h,w,n);
|
||||
layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
|
||||
layer->upsampled = make_image(h,w,n);
|
||||
return layer;
|
||||
}
|
||||
|
||||
|
@ -12,9 +12,12 @@ typedef struct {
|
||||
image output;
|
||||
} convolutional_layer;
|
||||
|
||||
convolutional_layer make_convolutional_layer(int w, int h, int c, int n, int size, int stride);
|
||||
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride);
|
||||
void run_convolutional_layer(const image input, const convolutional_layer layer);
|
||||
void learn_convolutional_layer(image input, convolutional_layer layer);
|
||||
void update_convolutional_layer(convolutional_layer layer, double step);
|
||||
void backpropagate_convolutional_layer(image input, convolutional_layer layer);
|
||||
void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -14,6 +14,7 @@ void normalize_image(image p);
|
||||
void threshold_image(image p, double t);
|
||||
void zero_image(image m);
|
||||
void rotate_image(image m);
|
||||
void subtract_image(image a, image b);
|
||||
|
||||
void show_image(image p, char *name);
|
||||
void show_image_layers(image p, char *name);
|
||||
|
@ -1,10 +1,10 @@
|
||||
#include "maxpool_layer.h"
|
||||
|
||||
maxpool_layer make_maxpool_layer(int h, int w, int c, int stride)
|
||||
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
|
||||
{
|
||||
maxpool_layer layer;
|
||||
layer.stride = stride;
|
||||
layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, c);
|
||||
maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
|
||||
layer->stride = stride;
|
||||
layer->output = make_image((h-1)/stride+1, (w-1)/stride+1, c);
|
||||
return layer;
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,7 @@ typedef struct {
|
||||
image output;
|
||||
} maxpool_layer;
|
||||
|
||||
maxpool_layer make_maxpool_layer(int h, int w, int c, int stride);
|
||||
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride);
|
||||
void run_maxpool_layer(const image input, const maxpool_layer layer);
|
||||
|
||||
#endif
|
||||
|
@ -5,6 +5,15 @@
|
||||
#include "convolutional_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
|
||||
network make_network(int n)
|
||||
{
|
||||
network net;
|
||||
net.n = n;
|
||||
net.layers = calloc(net.n, sizeof(void *));
|
||||
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
||||
return net;
|
||||
}
|
||||
|
||||
void run_network(image input, network net)
|
||||
{
|
||||
int i;
|
||||
@ -84,9 +93,9 @@ void learn_network(image input, network net)
|
||||
}
|
||||
}
|
||||
|
||||
double *get_network_output(network net)
|
||||
|
||||
double *get_network_output_layer(network net, int i)
|
||||
{
|
||||
int i = net.n-1;
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output.data;
|
||||
@ -101,6 +110,43 @@ double *get_network_output(network net)
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int get_network_output_size_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output.h*layer.output.w*layer.output.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output.h*layer.output.w*layer.output.c;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.outputs;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
double *get_network_output(network net)
|
||||
{
|
||||
int i = net.n-1;
|
||||
return get_network_output_layer(net, i);
|
||||
}
|
||||
|
||||
image get_network_image_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
return make_image(0,0,0);
|
||||
}
|
||||
|
||||
image get_network_image(network net)
|
||||
{
|
||||
int i;
|
||||
|
@ -16,11 +16,15 @@ typedef struct {
|
||||
LAYER_TYPE *types;
|
||||
} network;
|
||||
|
||||
network make_network(int n);
|
||||
void run_network(image input, network net);
|
||||
double *get_network_output(network net);
|
||||
void learn_network(image input, network net);
|
||||
void update_network(network net, double step);
|
||||
double *get_network_output(network net);
|
||||
double *get_network_output_layer(network net, int i);
|
||||
int get_network_output_size_layer(network net, int i);
|
||||
image get_network_image(network net);
|
||||
image get_network_image_layer(network net, int i);
|
||||
|
||||
#endif
|
||||
|
||||
|
61
src/tests.c
61
src/tests.c
@ -3,6 +3,7 @@
|
||||
#include "maxpool_layer.h"
|
||||
#include "network.h"
|
||||
#include "image.h"
|
||||
#include "parser.h"
|
||||
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
@ -39,7 +40,7 @@ void test_convolutional_layer()
|
||||
int n = 3;
|
||||
int stride = 1;
|
||||
int size = 3;
|
||||
convolutional_layer layer = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
char buff[256];
|
||||
for(i = 0; i < n; ++i) {
|
||||
sprintf(buff, "Kernel %d", i);
|
||||
@ -47,7 +48,7 @@ void test_convolutional_layer()
|
||||
}
|
||||
run_convolutional_layer(dog, layer);
|
||||
|
||||
maxpool_layer mlayer = make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
|
||||
maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2);
|
||||
run_maxpool_layer(layer.output,mlayer);
|
||||
|
||||
show_image_layers(mlayer.output, "Test Maxpool Layer");
|
||||
@ -112,25 +113,25 @@ void test_network()
|
||||
int n = 48;
|
||||
int stride = 4;
|
||||
int size = 11;
|
||||
convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
maxpool_layer ml = make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
|
||||
convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2);
|
||||
|
||||
n = 128;
|
||||
size = 5;
|
||||
stride = 1;
|
||||
convolutional_layer cl2 = make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
|
||||
maxpool_layer ml2 = make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
|
||||
convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride);
|
||||
maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2);
|
||||
|
||||
n = 192;
|
||||
size = 3;
|
||||
convolutional_layer cl3 = make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
|
||||
convolutional_layer cl4 = make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
|
||||
convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride);
|
||||
convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride);
|
||||
n = 128;
|
||||
convolutional_layer cl5 = make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
|
||||
maxpool_layer ml3 = make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
|
||||
connected_layer nl = make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
|
||||
connected_layer nl2 = make_connected_layer(4096, 4096, RELU);
|
||||
connected_layer nl3 = make_connected_layer(4096, 1000, RELU);
|
||||
convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride);
|
||||
maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4);
|
||||
connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU);
|
||||
connected_layer nl2 = *make_connected_layer(4096, 4096, RELU);
|
||||
connected_layer nl3 = *make_connected_layer(4096, 1000, RELU);
|
||||
|
||||
net.layers[0] = &cl;
|
||||
net.layers[1] = &ml;
|
||||
@ -164,7 +165,7 @@ void test_backpropagate()
|
||||
image dog = load_image("dog.jpg");
|
||||
show_image(dog, "Test Backpropagate Input");
|
||||
image dog_copy = copy_image(dog);
|
||||
convolutional_layer cl = make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride);
|
||||
run_convolutional_layer(dog, cl);
|
||||
show_image(cl.output, "Test Backpropagate Output");
|
||||
int i;
|
||||
@ -196,9 +197,9 @@ void test_ann()
|
||||
net.types[1] = CONNECTED;
|
||||
net.types[2] = CONNECTED;
|
||||
|
||||
connected_layer nl = make_connected_layer(1, 20, RELU);
|
||||
connected_layer nl2 = make_connected_layer(20, 20, RELU);
|
||||
connected_layer nl3 = make_connected_layer(20, 1, RELU);
|
||||
connected_layer nl = *make_connected_layer(1, 20, RELU);
|
||||
connected_layer nl2 = *make_connected_layer(20, 20, RELU);
|
||||
connected_layer nl3 = *make_connected_layer(20, 1, RELU);
|
||||
|
||||
net.layers[0] = &nl;
|
||||
net.layers[1] = &nl2;
|
||||
@ -225,10 +226,34 @@ void test_ann()
|
||||
|
||||
}
|
||||
|
||||
void test_parser()
|
||||
{
|
||||
network net = parse_network_cfg("test.cfg");
|
||||
image t = make_image(1,1,1);
|
||||
int count = 0;
|
||||
|
||||
double avgerr = 0;
|
||||
while(1){
|
||||
double v = ((double)rand()/RAND_MAX);
|
||||
double truth = v*v;
|
||||
set_pixel(t,0,0,0,v);
|
||||
run_network(t, net);
|
||||
double *out = get_network_output(net);
|
||||
double err = pow((out[0]-truth),2.);
|
||||
avgerr = .99 * avgerr + .01 * err;
|
||||
//if(++count % 100000 == 0) printf("%f\n", avgerr);
|
||||
if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
||||
out[0] = truth - out[0];
|
||||
learn_network(t, net);
|
||||
update_network(net, .001);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test_parser();
|
||||
//test_backpropagate();
|
||||
test_ann();
|
||||
//test_ann();
|
||||
//test_convolve();
|
||||
//test_upsample();
|
||||
//test_rotate();
|
||||
|
Loading…
Reference in New Issue
Block a user