2015-01-23 03:38:24 +03:00
|
|
|
extern "C" {
|
|
|
|
#include "activations.h"
|
|
|
|
#include "cuda.h"
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ float linear_activate_kernel(float x){return x;}
|
2015-03-08 21:31:12 +03:00
|
|
|
__device__ float logistic_activate_kernel(float x){return 1./(1. + exp(-x));}
|
2015-01-23 03:38:24 +03:00
|
|
|
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
|
|
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
|
|
|
|
__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
2015-03-21 22:25:14 +03:00
|
|
|
__device__ float plse_activate_kernel(float x)
|
|
|
|
{
|
|
|
|
if(x < -4) return .01 * (x + 4);
|
|
|
|
if(x > 4) return .01 * (x - 4) + 1;
|
|
|
|
return .125*x + .5;
|
|
|
|
}
|
2015-01-23 03:38:24 +03:00
|
|
|
|
|
|
|
__device__ float linear_gradient_kernel(float x){return 1;}
|
2015-03-08 21:31:12 +03:00
|
|
|
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
|
2015-01-23 03:38:24 +03:00
|
|
|
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
|
|
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
|
|
|
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
2015-03-21 22:25:14 +03:00
|
|
|
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01 : .125;}
|
2015-01-23 03:38:24 +03:00
|
|
|
|
|
|
|
__device__ float activate_kernel(float x, ACTIVATION a)
|
|
|
|
{
|
|
|
|
switch(a){
|
|
|
|
case LINEAR:
|
|
|
|
return linear_activate_kernel(x);
|
2015-03-08 21:31:12 +03:00
|
|
|
case LOGISTIC:
|
|
|
|
return logistic_activate_kernel(x);
|
2015-01-23 03:38:24 +03:00
|
|
|
case RELU:
|
|
|
|
return relu_activate_kernel(x);
|
|
|
|
case RAMP:
|
|
|
|
return ramp_activate_kernel(x);
|
|
|
|
case TANH:
|
|
|
|
return tanh_activate_kernel(x);
|
2015-03-21 22:25:14 +03:00
|
|
|
case PLSE:
|
|
|
|
return plse_activate_kernel(x);
|
2015-01-23 03:38:24 +03:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ float gradient_kernel(float x, ACTIVATION a)
|
|
|
|
{
|
|
|
|
switch(a){
|
|
|
|
case LINEAR:
|
|
|
|
return linear_gradient_kernel(x);
|
2015-03-08 21:31:12 +03:00
|
|
|
case LOGISTIC:
|
|
|
|
return logistic_gradient_kernel(x);
|
2015-01-23 03:38:24 +03:00
|
|
|
case RELU:
|
|
|
|
return relu_gradient_kernel(x);
|
|
|
|
case RAMP:
|
|
|
|
return ramp_gradient_kernel(x);
|
|
|
|
case TANH:
|
|
|
|
return tanh_gradient_kernel(x);
|
2015-03-21 22:25:14 +03:00
|
|
|
case PLSE:
|
|
|
|
return plse_gradient_kernel(x);
|
2015-01-23 03:38:24 +03:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
|
|
|
{
|
|
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
|
|
if(i < n) x[i] = activate_kernel(x[i], a);
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
|
|
|
{
|
|
|
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
|
|
|
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
|
|
|
{
|
|
|
|
activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
|
|
|
|
check_error(cudaPeekAtLastError());
|
|
|
|
}
|
|
|
|
|
|
|
|
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
|
|
|
{
|
|
|
|
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta);
|
|
|
|
check_error(cudaPeekAtLastError());
|
|
|
|
}
|