mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
CUDA so fast
This commit is contained in:
parent
4ac78c8926
commit
809f924db2
65
Makefile
65
Makefile
@ -1,48 +1,49 @@
|
||||
GPU=1
|
||||
CLBLAS=0
|
||||
DEBUG=0
|
||||
|
||||
CC=gcc
|
||||
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||
ifeq ($(GPU), 1)
|
||||
COMMON+=-DGPU
|
||||
endif
|
||||
|
||||
ifeq ($(CLBLAS), 1)
|
||||
COMMON+=-DCLBLAS
|
||||
LDFLAGS=-lclBLAS
|
||||
endif
|
||||
|
||||
UNAME = $(shell uname)
|
||||
#OPTS=-Ofast -flto
|
||||
OPTS=-O3 -flto
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS= -framework OpenCL
|
||||
endif
|
||||
else
|
||||
OPTS+= -march=native
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS+= -lOpenCL
|
||||
endif
|
||||
endif
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
OBJDIR=./obj/
|
||||
|
||||
OBJ=network.o network_gpu.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o server.o
|
||||
CC=gcc
|
||||
NVCC=nvcc
|
||||
OPTS=-O3
|
||||
LINKER=$(CC)
|
||||
LDFLAGS=`pkg-config --libs opencv` -lm -pthread
|
||||
COMMON=`pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||
CFLAGS=-Wall -Wfatal-errors
|
||||
CFLAGS+=$(OPTS)
|
||||
|
||||
ifeq ($(DEBUG), 1)
|
||||
COMMON+=-O0 -g
|
||||
CFLAGS+=-O0 -g
|
||||
endif
|
||||
|
||||
ifeq ($(GPU), 1)
|
||||
LINKER=$(NVCC)
|
||||
COMMON+=-DGPU
|
||||
CFLAGS+=-DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
|
||||
endif
|
||||
|
||||
#OBJ=network.o network_gpu.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o server.o
|
||||
OBJ=gemm.o utils.o cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o cnn.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
|
||||
endif
|
||||
|
||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||
|
||||
all: $(EXEC)
|
||||
|
||||
$(EXEC): $(OBJS)
|
||||
$(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@
|
||||
$(CC) $(COMMON) $(CFLAGS) $(LDFLAGS) $^ -o $@
|
||||
|
||||
$(OBJDIR)%.o: %.c
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
|
||||
|
||||
$(OBJDIR)%.o: %.cu
|
||||
$(NVCC) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
|
75
src/activation_kernels.cu
Normal file
75
src/activation_kernels.cu
Normal file
@ -0,0 +1,75 @@
|
||||
extern "C" {
|
||||
#include "activations.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__device__ float linear_activate_kernel(float x){return x;}
|
||||
__device__ float sigmoid_activate_kernel(float x){return 1./(1. + exp(-x));}
|
||||
__device__ float relu_activate_kernel(float x){return x*(x>0);}
|
||||
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1*x;}
|
||||
//__device__ float ramp_activate_kernel(float x){return 0;}
|
||||
__device__ float tanh_activate_kernel(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
||||
|
||||
__device__ float linear_gradient_kernel(float x){return 1;}
|
||||
__device__ float sigmoid_gradient_kernel(float x){return (1-x)*x;}
|
||||
__device__ float relu_gradient_kernel(float x){return (x>0);}
|
||||
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1;}
|
||||
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
|
||||
|
||||
__device__ float activate_kernel(float x, ACTIVATION a)
|
||||
{
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
return linear_activate_kernel(x);
|
||||
case SIGMOID:
|
||||
return sigmoid_activate_kernel(x);
|
||||
case RELU:
|
||||
return relu_activate_kernel(x);
|
||||
case RAMP:
|
||||
return ramp_activate_kernel(x);
|
||||
case TANH:
|
||||
return tanh_activate_kernel(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
__device__ float gradient_kernel(float x, ACTIVATION a)
|
||||
{
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
return linear_gradient_kernel(x);
|
||||
case SIGMOID:
|
||||
return sigmoid_gradient_kernel(x);
|
||||
case RELU:
|
||||
return relu_gradient_kernel(x);
|
||||
case RAMP:
|
||||
return ramp_gradient_kernel(x);
|
||||
case TANH:
|
||||
return tanh_gradient_kernel(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < n) x[i] = activate_kernel(x[i], a);
|
||||
}
|
||||
|
||||
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < n) delta[i] *= gradient_kernel(x[i], a);
|
||||
}
|
||||
|
||||
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
||||
{
|
||||
activate_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
|
||||
{
|
||||
gradient_array_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, a, delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
@ -98,65 +98,3 @@ void gradient_array(const float *x, const int n, const ACTIVATION a, float *delt
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
#include "opencl.h"
|
||||
#include <math.h>
|
||||
|
||||
cl_kernel get_activation_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/activations.cl", "activate_array", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void activate_array_ongpu(cl_mem x, int n, ACTIVATION a)
|
||||
{
|
||||
cl_kernel kernel = get_activation_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(a), (void*) &a);
|
||||
check_error(cl);
|
||||
|
||||
size_t gsize = n;
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
cl_kernel get_gradient_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/activations.cl", "gradient_array", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void gradient_array_ongpu(cl_mem x, int n, ACTIVATION a, cl_mem delta)
|
||||
{
|
||||
cl_kernel kernel = get_gradient_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(a), (void*) &a);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
|
||||
check_error(cl);
|
||||
|
||||
size_t gsize = n;
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, &gsize, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
||||
|
@ -1,62 +0,0 @@
|
||||
typedef enum{
|
||||
SIGMOID, RELU, LINEAR, RAMP, TANH
|
||||
}ACTIVATION;
|
||||
|
||||
float linear_activate(float x){return x;}
|
||||
float sigmoid_activate(float x){return 1./(1. + exp(-x));}
|
||||
float relu_activate(float x){return x*(x>0);}
|
||||
float ramp_activate(float x){return x*(x>0)+.1*x;}
|
||||
float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
||||
|
||||
float linear_gradient(float x){return 1;}
|
||||
float sigmoid_gradient(float x){return (1-x)*x;}
|
||||
float relu_gradient(float x){return (x>0);}
|
||||
float ramp_gradient(float x){return (x>0)+.1;}
|
||||
float tanh_gradient(float x){return 1-x*x;}
|
||||
|
||||
float activate(float x, ACTIVATION a)
|
||||
{
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
return linear_activate(x);
|
||||
case SIGMOID:
|
||||
return sigmoid_activate(x);
|
||||
case RELU:
|
||||
return relu_activate(x);
|
||||
case RAMP:
|
||||
return ramp_activate(x);
|
||||
case TANH:
|
||||
return tanh_activate(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float gradient(float x, ACTIVATION a)
|
||||
{
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
return linear_gradient(x);
|
||||
case SIGMOID:
|
||||
return sigmoid_gradient(x);
|
||||
case RELU:
|
||||
return relu_gradient(x);
|
||||
case RAMP:
|
||||
return ramp_gradient(x);
|
||||
case TANH:
|
||||
return tanh_gradient(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
__kernel void activate_array(__global float *x, int n, ACTIVATION a)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
x[i] = activate(x[i], a);
|
||||
}
|
||||
|
||||
__kernel void gradient_array(__global float *x, int n, ACTIVATION a, __global float *delta)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
delta[i] *= gradient(x[i], a);
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
#include "opencl.h"
|
||||
#include "cuda.h"
|
||||
#ifndef ACTIVATIONS_H
|
||||
#define ACTIVATIONS_H
|
||||
|
||||
@ -14,9 +14,8 @@ float gradient(float x, ACTIVATION a);
|
||||
void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta);
|
||||
void activate_array(float *x, const int n, const ACTIVATION a);
|
||||
#ifdef GPU
|
||||
cl_kernel get_activation_kernel();
|
||||
void activate_array_ongpu(cl_mem x, int n, ACTIVATION a);
|
||||
void gradient_array_ongpu(cl_mem x, int n, ACTIVATION a, cl_mem delta);
|
||||
void activate_array_ongpu(float *x, int n, ACTIVATION a);
|
||||
void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
134
src/axpy.c
134
src/axpy.c
@ -1,134 +0,0 @@
|
||||
#include "mini_blas.h"
|
||||
|
||||
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
|
||||
}
|
||||
|
||||
void scal_cpu(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
|
||||
}
|
||||
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
float dot = 0;
|
||||
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
|
||||
return dot;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
#include "opencl.h"
|
||||
|
||||
cl_kernel get_axpy_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/axpy.cl", "axpy", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_copy_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/axpy.cl", "copy", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_scal_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/axpy.cl", "scal", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
|
||||
void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY)
|
||||
{
|
||||
axpy_ongpu_offset(N,ALPHA,X,0,INCX,Y,0,INCY);
|
||||
}
|
||||
|
||||
void axpy_ongpu_offset(int N, float ALPHA, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY)
|
||||
{
|
||||
cl_kernel kernel = get_axpy_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(X), (void*) &X);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFX), (void*) &OFFX);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(INCX), (void*) &INCX);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(Y), (void*) &Y);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFY), (void*) &OFFY);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(INCY), (void*) &INCY);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
}
|
||||
void copy_ongpu(int N, cl_mem X, int INCX, cl_mem Y, int INCY)
|
||||
{
|
||||
copy_ongpu_offset(N,X,0,INCX,Y,0,INCY);
|
||||
}
|
||||
void copy_ongpu_offset(int N, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY)
|
||||
{
|
||||
cl_kernel kernel = get_copy_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(X), (void*) &X);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFX), (void*) &OFFX);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(INCX), (void*) &INCX);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(Y), (void*) &Y);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFY), (void*) &OFFY);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(INCY), (void*) &INCY);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
void scal_ongpu(int N, float ALPHA, cl_mem X, int INCX)
|
||||
{
|
||||
cl_kernel kernel = get_scal_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(X), (void*) &X);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(INCX), (void*) &INCX);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {N};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
24
src/axpy.cl
24
src/axpy.cl
@ -1,24 +0,0 @@
|
||||
__kernel void axpy(int N, float ALPHA, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX];
|
||||
}
|
||||
|
||||
__kernel void scal(int N, float ALPHA, __global float *X, int INCX)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
__kernel void mask(int n, __global float *x, __global float *mask, int mod)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
x[i] = (i%mod && !mask[(i/mod)*mod]) ? 0 : x[i];
|
||||
}
|
||||
|
||||
__kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
Y[i*INCY + OFFY] = X[i*INCX + OFFX];
|
||||
}
|
||||
|
28
src/blas.c
Normal file
28
src/blas.c
Normal file
@ -0,0 +1,28 @@
|
||||
#include "blas.h"
|
||||
|
||||
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
|
||||
}
|
||||
|
||||
void scal_cpu(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
|
||||
}
|
||||
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
float dot = 0;
|
||||
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
|
||||
return dot;
|
||||
}
|
||||
|
23
src/blas.h
Normal file
23
src/blas.h
Normal file
@ -0,0 +1,23 @@
|
||||
#ifndef BLAS_H
|
||||
#define BLAS_H
|
||||
void pm(int M, int N, float *A);
|
||||
float *random_matrix(int rows, int cols);
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n);
|
||||
|
||||
void test_blas();
|
||||
|
||||
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void test_gpu_blas();
|
||||
|
||||
#ifdef GPU
|
||||
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
||||
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY);
|
||||
void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
void scal_ongpu(int N, float ALPHA, float * X, int INCX);
|
||||
void mask_ongpu(int N, float * X, float * mask, float mod);
|
||||
#endif
|
||||
#endif
|
62
src/blas_kernels.cu
Normal file
62
src/blas_kernels.cu
Normal file
@ -0,0 +1,62 @@
|
||||
extern "C" {
|
||||
#include "blas.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX];
|
||||
}
|
||||
|
||||
__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < N) X[i*INCX] *= ALPHA;
|
||||
}
|
||||
|
||||
__global__ void mask_kernel(int n, float *x, float *mask, int mod)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < n) x[i] = (i%mod && !mask[(i/mod)*mod]) ? 0 : x[i];
|
||||
}
|
||||
|
||||
__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX];
|
||||
}
|
||||
|
||||
extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY)
|
||||
{
|
||||
axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY);
|
||||
}
|
||||
|
||||
extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
|
||||
{
|
||||
axpy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY)
|
||||
{
|
||||
copy_ongpu_offset(N, X, 0, INCX, Y, 0, INCY);
|
||||
}
|
||||
|
||||
extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY)
|
||||
{
|
||||
copy_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, OFFX, INCX, Y, OFFY, INCY);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void mask_ongpu(int N, float * X, float * mask, float mod)
|
||||
{
|
||||
mask_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, mask, mod);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX)
|
||||
{
|
||||
scal_kernel<<<cuda_gridsize(N), BLOCK>>>(N, ALPHA, X, INCX);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
49
src/cnn.c
49
src/cnn.c
@ -7,7 +7,7 @@
|
||||
#include "data.h"
|
||||
#include "matrix.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "blas.h"
|
||||
#include "matrix.h"
|
||||
#include "server.h"
|
||||
|
||||
@ -165,6 +165,7 @@ void validate_detection_net(char *cfgfile)
|
||||
free_data(val);
|
||||
}
|
||||
}
|
||||
/*
|
||||
|
||||
void train_imagenet_distributed(char *address)
|
||||
{
|
||||
@ -203,6 +204,7 @@ void train_imagenet_distributed(char *address)
|
||||
free_data(train);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void train_imagenet(char *cfgfile)
|
||||
{
|
||||
@ -210,10 +212,10 @@ void train_imagenet(char *cfgfile)
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
set_learning_network(&net, net.learning_rate*100., net.momentum, net.decay);
|
||||
set_learning_network(&net, net.learning_rate, net.momentum, net.decay);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1024;
|
||||
int i = 6600;
|
||||
int imgs = 3072;
|
||||
int i = net.seen/imgs;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -224,19 +226,20 @@ void train_imagenet(char *cfgfile)
|
||||
data buffer;
|
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
|
||||
while(1){
|
||||
i += 1;
|
||||
++i;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
normalize_data_rows(train);
|
||||
//normalize_data_rows(train);
|
||||
//translate_data_rows(train, -128);
|
||||
//scale_data_rows(train, 1./128);
|
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
net.seen += imgs;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
|
||||
free_data(train);
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
@ -272,7 +275,7 @@ void validate_imagenet(char *filename)
|
||||
|
||||
pthread_join(load_thread, 0);
|
||||
val = buffer;
|
||||
normalize_data_rows(val);
|
||||
//normalize_data_rows(val);
|
||||
|
||||
num = (i+1)*m/splits - i*m/splits;
|
||||
char **part = paths+(i*m/splits);
|
||||
@ -466,6 +469,7 @@ void train_nist(char *cfgfile)
|
||||
save_network(net, buff);
|
||||
}
|
||||
|
||||
/*
|
||||
void train_nist_distributed(char *address)
|
||||
{
|
||||
srand(time(0));
|
||||
@ -487,6 +491,7 @@ void train_nist_distributed(char *address)
|
||||
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void test_ensemble()
|
||||
{
|
||||
@ -537,10 +542,27 @@ void visualize_cat()
|
||||
cvWaitKey(0);
|
||||
}
|
||||
|
||||
void test_convolutional_layer()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
int size = get_network_input_size(net);
|
||||
float *in = calloc(size, sizeof(float));
|
||||
int i;
|
||||
for(i = 0; i < size; ++i) in[i] = rand_normal();
|
||||
float *in_gpu = cuda_make_array(in, size);
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[0];
|
||||
int out_size = convolutional_out_height(layer)*convolutional_out_width(layer)*layer.batch;
|
||||
cuda_compare(layer.output_gpu, layer.output, out_size, "nothing");
|
||||
cuda_compare(layer.biases_gpu, layer.biases, layer.n, "biases");
|
||||
cuda_compare(layer.filters_gpu, layer.filters, layer.n*layer.size*layer.size*layer.c, "filters");
|
||||
bias_output(layer);
|
||||
bias_output_gpu(layer);
|
||||
cuda_compare(layer.output_gpu, layer.output, out_size, "biased output");
|
||||
}
|
||||
|
||||
void test_correct_nist()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
test_learn_bias(*(convolutional_layer *)net.layers[0]);
|
||||
srand(222222);
|
||||
net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
||||
@ -616,6 +638,7 @@ void test_correct_alexnet()
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
void run_server()
|
||||
{
|
||||
srand(time(0));
|
||||
@ -636,6 +659,7 @@ void test_client()
|
||||
printf("3\n");
|
||||
printf("Transfered: %lf seconds\n", sec(clock()-time));
|
||||
}
|
||||
*/
|
||||
|
||||
void del_arg(int argc, char **argv, int index)
|
||||
{
|
||||
@ -669,6 +693,7 @@ int find_int_arg(int argc, char **argv, char *arg, int def)
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//test_convolutional_layer();
|
||||
if(argc < 2){
|
||||
fprintf(stderr, "usage: %s <function>\n", argv[0]);
|
||||
return 0;
|
||||
@ -680,7 +705,7 @@ int main(int argc, char **argv)
|
||||
gpu_index = -1;
|
||||
#else
|
||||
if(gpu_index >= 0){
|
||||
cl_setup();
|
||||
cudaSetDevice(gpu_index);
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -688,7 +713,7 @@ int main(int argc, char **argv)
|
||||
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
|
||||
else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
|
||||
else if(0==strcmp(argv[1], "test")) test_imagenet();
|
||||
else if(0==strcmp(argv[1], "server")) run_server();
|
||||
//else if(0==strcmp(argv[1], "server")) run_server();
|
||||
|
||||
#ifdef GPU
|
||||
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
|
||||
@ -701,7 +726,7 @@ int main(int argc, char **argv)
|
||||
else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]);
|
||||
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
|
||||
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2]);
|
||||
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
||||
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
||||
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2]);
|
||||
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
|
||||
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
|
||||
|
66
src/col2im.c
66
src/col2im.c
@ -41,69 +41,3 @@ void col2im_cpu(float* data_col,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
#include "opencl.h"
|
||||
|
||||
cl_kernel get_col2im_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel im2col_kernel;
|
||||
if(!init){
|
||||
im2col_kernel = get_kernel("src/col2im.cl", "col2im", 0);
|
||||
init = 1;
|
||||
}
|
||||
return im2col_kernel;
|
||||
}
|
||||
|
||||
void col2im_ongpu(cl_mem data_col, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, cl_mem data_im)
|
||||
{
|
||||
cl_kernel kernel = get_col2im_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(data_col), (void*) &data_col);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(offset), (void*) &offset);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(channels), (void*) &channels);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(height), (void*) &height);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(width), (void*) &width);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(ksize), (void*) &ksize);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(stride), (void*) &stride);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(pad), (void*) &pad);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(data_im), (void*) &data_im);
|
||||
check_error(cl);
|
||||
|
||||
size_t global_size = channels*height*width;
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
&global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
/*
|
||||
void col2im_gpu(float *data_col, int batch,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_im)
|
||||
{
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
|
||||
size_t size = height_col*width_col*channels_col*batch;
|
||||
cl_mem col_gpu = cl_make_array(data_col, size);
|
||||
size = channels*height*width*batch;
|
||||
cl_mem im_gpu = cl_make_array(data_im, size);
|
||||
|
||||
col2im_ongpu(col_gpu, batch, channels, height, width,
|
||||
ksize, stride, pad, im_gpu);
|
||||
|
||||
cl_read_array(im_gpu, data_im, size);
|
||||
clReleaseMemObject(col_gpu);
|
||||
clReleaseMemObject(im_gpu);
|
||||
}
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
13
src/col2im.h
Normal file
13
src/col2im.h
Normal file
@ -0,0 +1,13 @@
|
||||
#ifndef COL2IM_H
|
||||
#define COL2IM_H
|
||||
|
||||
void col2im_cpu(float* data_col,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_im);
|
||||
|
||||
#ifdef GPU
|
||||
void col2im_ongpu(float *data_col, int batch,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_im);
|
||||
#endif
|
||||
#endif
|
@ -1,6 +1,11 @@
|
||||
__kernel void col2im(__global float *data_col, int offset,
|
||||
extern "C" {
|
||||
#include "col2im.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void col2im_kernel(float *data_col, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, __global float *data_im)
|
||||
int ksize, int stride, int pad, float *data_im)
|
||||
{
|
||||
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
@ -11,7 +16,9 @@ __kernel void col2im(__global float *data_col, int offset,
|
||||
pad = ksize/2;
|
||||
}
|
||||
|
||||
int id = get_global_id(0);
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id >= channels*height*width) return;
|
||||
|
||||
int index = id;
|
||||
int w = id%width + pad;
|
||||
id /= width;
|
||||
@ -25,8 +32,8 @@ __kernel void col2im(__global float *data_col, int offset,
|
||||
int h_start = (h-ksize+stride)/stride;
|
||||
int h_end = h/stride + 1;
|
||||
|
||||
int rows = channels * ksize * ksize;
|
||||
int cols = height_col*width_col;
|
||||
// int rows = channels * ksize * ksize;
|
||||
// int cols = height_col*width_col;
|
||||
int col_offset = (c*ksize*ksize + h * ksize + w)*height_col*width_col;
|
||||
int h_coeff = (1-stride*ksize*height_col)*width_col;
|
||||
int w_coeff = 1-stride*height_col*width_col;
|
||||
@ -41,3 +48,15 @@ __kernel void col2im(__global float *data_col, int offset,
|
||||
}
|
||||
data_im[index+offset] = val;
|
||||
}
|
||||
|
||||
|
||||
extern "C" void col2im_ongpu(float *data_col, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_im)
|
||||
{
|
||||
|
||||
size_t n = channels*height*width;
|
||||
|
||||
col2im_kernel<<<cuda_gridsize(n), BLOCK>>>(data_col, offset, channels, height, width, ksize, stride, pad, data_im);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
@ -1,6 +1,8 @@
|
||||
#include "connected_layer.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "cuda.h"
|
||||
#include "blas.h"
|
||||
#include "gemm.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
@ -44,14 +46,14 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_cl = cl_make_array(layer->biases, outputs);
|
||||
layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, outputs);
|
||||
|
||||
layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
|
||||
layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs);
|
||||
|
||||
layer->output_cl = cl_make_array(layer->output, outputs*batch);
|
||||
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
||||
layer->output_gpu = cuda_make_array(layer->output, outputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
@ -140,68 +142,68 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
|
||||
void pull_connected_layer(connected_layer layer)
|
||||
{
|
||||
cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
||||
cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
|
||||
cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
||||
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer layer)
|
||||
{
|
||||
cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
||||
cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
|
||||
cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
||||
cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer)
|
||||
{
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1);
|
||||
//pull_connected_layer(layer);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
|
||||
void forward_connected_layer_gpu(connected_layer layer, float * input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
|
||||
copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
cl_mem a = input;
|
||||
cl_mem b = layer.weights_cl;
|
||||
cl_mem c = layer.output_cl;
|
||||
float * a = input;
|
||||
float * b = layer.weights_gpu;
|
||||
float * c = layer.output_gpu;
|
||||
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
|
||||
activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
|
||||
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta)
|
||||
{
|
||||
int i;
|
||||
gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
|
||||
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
|
||||
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
cl_mem a = input;
|
||||
cl_mem b = layer.delta_cl;
|
||||
cl_mem c = layer.weight_updates_cl;
|
||||
float * a = input;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.weight_updates_gpu;
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
|
||||
a = layer.delta_cl;
|
||||
b = layer.weights_cl;
|
||||
a = layer.delta_gpu;
|
||||
b = layer.weights_gpu;
|
||||
c = delta;
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
|
@ -2,7 +2,6 @@
|
||||
#define CONNECTED_LAYER_H
|
||||
|
||||
#include "activations.h"
|
||||
#include "opencl.h"
|
||||
|
||||
typedef struct{
|
||||
float learning_rate;
|
||||
@ -25,14 +24,14 @@ typedef struct{
|
||||
float *delta;
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem weights_cl;
|
||||
cl_mem biases_cl;
|
||||
float * weights_gpu;
|
||||
float * biases_gpu;
|
||||
|
||||
cl_mem weight_updates_cl;
|
||||
cl_mem bias_updates_cl;
|
||||
float * weight_updates_gpu;
|
||||
float * bias_updates_gpu;
|
||||
|
||||
cl_mem output_cl;
|
||||
cl_mem delta_cl;
|
||||
float * output_gpu;
|
||||
float * delta_gpu;
|
||||
#endif
|
||||
ACTIVATION activation;
|
||||
|
||||
@ -46,8 +45,8 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
void update_connected_layer(connected_layer layer);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_connected_layer_gpu(connected_layer layer, cl_mem input);
|
||||
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta);
|
||||
void forward_connected_layer_gpu(connected_layer layer, float * input);
|
||||
void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta);
|
||||
void update_connected_layer_gpu(connected_layer layer);
|
||||
void push_connected_layer(connected_layer layer);
|
||||
void pull_connected_layer(connected_layer layer);
|
||||
|
164
src/convolutional_kernels.cu
Normal file
164
src/convolutional_kernels.cu
Normal file
@ -0,0 +1,164 @@
|
||||
extern "C" {
|
||||
#include "convolutional_layer.h"
|
||||
#include "gemm.h"
|
||||
#include "blas.h"
|
||||
#include "im2col.h"
|
||||
#include "col2im.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void bias(int n, int size, float *biases, float *output)
|
||||
{
|
||||
int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int filter = blockIdx.y;
|
||||
int batch = blockIdx.z;
|
||||
|
||||
if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter];
|
||||
}
|
||||
|
||||
extern "C" void bias_output_gpu(const convolutional_layer layer)
|
||||
{
|
||||
int size = convolutional_out_height(layer)*convolutional_out_width(layer);
|
||||
|
||||
dim3 dimBlock(BLOCK, 1, 1);
|
||||
dim3 dimGrid((size-1)/BLOCK + 1, layer.n, layer.batch);
|
||||
|
||||
bias<<<dimGrid, dimBlock>>>(layer.n, size, layer.biases_gpu, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void learn_bias(int batch, int n, int size, float *delta, float *bias_updates)
|
||||
{
|
||||
__shared__ float part[BLOCK];
|
||||
int i,b;
|
||||
int filter = (blockIdx.x + blockIdx.y*gridDim.x);
|
||||
int p = threadIdx.x;
|
||||
float sum = 0;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < size; i += BLOCK){
|
||||
int index = p + i + size*(filter + n*b);
|
||||
sum += (p+i < size) ? delta[index] : 0;
|
||||
}
|
||||
}
|
||||
part[p] = sum;
|
||||
__syncthreads();
|
||||
if(p == 0){
|
||||
for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
||||
{
|
||||
int size = convolutional_out_height(layer)*convolutional_out_width(layer);
|
||||
|
||||
|
||||
learn_bias<<<cuda_gridsize(layer.n), BLOCK>>>(layer.batch, layer.n, size, layer.delta_gpu, layer.bias_updates_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void test_learn_bias(convolutional_layer l)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(l) * convolutional_out_width(l);
|
||||
for(i = 0; i < size*l.batch*l.n; ++i){
|
||||
l.delta[i] = rand_uniform();
|
||||
}
|
||||
for(i = 0; i < l.n; ++i){
|
||||
l.bias_updates[i] = rand_uniform();
|
||||
}
|
||||
cuda_push_array(l.delta_gpu, l.delta, size*l.batch*l.n);
|
||||
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
|
||||
float *gpu = (float *) calloc(l.n, sizeof(float));
|
||||
cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
learn_bias_convolutional_layer_ongpu(l);
|
||||
learn_bias_convolutional_layer(l);
|
||||
cuda_pull_array(l.bias_updates_gpu, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
}
|
||||
|
||||
extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
|
||||
bias_output_gpu(layer);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
|
||||
float * a = layer.filters_gpu;
|
||||
float * b = layer.col_image_gpu;
|
||||
float * c = layer.output_gpu;
|
||||
gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
|
||||
}
|
||||
activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation);
|
||||
cuda_pull_array(layer.output_gpu, layer.output, m*n*layer.batch);
|
||||
//for(i = 0; i < m*n*layer.batch; ++i) printf("%f, ", layer.output[i]);
|
||||
//printf("\n");
|
||||
}
|
||||
|
||||
extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu);
|
||||
learn_bias_convolutional_layer_ongpu(layer);
|
||||
|
||||
if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float * a = layer.delta_gpu;
|
||||
float * b = layer.col_image_gpu;
|
||||
float * c = layer.filter_updates_gpu;
|
||||
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu);
|
||||
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
|
||||
|
||||
if(delta_gpu){
|
||||
|
||||
float * a = layer.filters_gpu;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.col_image_gpu;
|
||||
|
||||
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
|
||||
|
||||
col2im_ongpu(layer.col_image_gpu, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void pull_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
extern "C" void push_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_push_array(layer.biases_gpu, layer.biases, layer.n);
|
||||
cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
extern "C" void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1);
|
||||
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1);
|
||||
scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1);
|
||||
//pull_convolutional_layer(layer);
|
||||
}
|
||||
|
@ -1,6 +1,9 @@
|
||||
#include "convolutional_layer.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "im2col.h"
|
||||
#include "col2im.h"
|
||||
#include "blas.h"
|
||||
#include "gemm.h"
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
@ -77,15 +80,15 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
|
||||
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
||||
|
||||
layer->biases_cl = cl_make_array(layer->biases, n);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
|
||||
@ -140,7 +143,6 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
@ -265,183 +267,3 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
|
||||
return single_filters;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
#define BLOCK 32
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
|
||||
|
||||
cl_kernel get_convolutional_learn_bias_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK));
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
||||
{
|
||||
int size = convolutional_out_height(layer) * convolutional_out_width(layer);
|
||||
|
||||
cl_kernel kernel = get_convolutional_learn_bias_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.n*BLOCK};
|
||||
const size_t local_size[] = {BLOCK};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void test_learn_bias(convolutional_layer l)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(l) * convolutional_out_width(l);
|
||||
for(i = 0; i < size*l.batch*l.n; ++i){
|
||||
l.delta[i] = rand_uniform();
|
||||
}
|
||||
for(i = 0; i < l.n; ++i){
|
||||
l.bias_updates[i] = rand_uniform();
|
||||
}
|
||||
cl_write_array(l.delta_cl, l.delta, size*l.batch*l.n);
|
||||
cl_write_array(l.bias_updates_cl, l.bias_updates, l.n);
|
||||
float *gpu = calloc(l.n, sizeof(float));
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
learn_bias_convolutional_layer_ongpu(l);
|
||||
learn_bias_convolutional_layer(l);
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
}
|
||||
|
||||
cl_kernel get_convolutional_bias_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK));
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void bias_output_gpu(const convolutional_layer layer)
|
||||
{
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
int size = out_h*out_w;
|
||||
|
||||
cl_kernel kernel = get_convolutional_bias_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.n*size, layer.batch};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
//#define TIMEIT
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
|
||||
bias_output_gpu(layer);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.output_cl;
|
||||
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
|
||||
}
|
||||
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
|
||||
learn_bias_convolutional_layer_ongpu(layer);
|
||||
|
||||
if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem a = layer.delta_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.filter_updates_cl;
|
||||
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
|
||||
|
||||
if(delta_cl){
|
||||
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.delta_cl;
|
||||
cl_mem c = layer.col_image_cl;
|
||||
|
||||
gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
|
||||
|
||||
col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pull_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
|
||||
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
|
||||
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
|
||||
//pull_convolutional_layer(layer);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -1,31 +0,0 @@
|
||||
|
||||
__kernel void bias(int n, int size, __global float *biases, __global float *output)
|
||||
{
|
||||
int id = get_global_id(0);
|
||||
int batch = get_global_id(1);
|
||||
int filter = id/size;
|
||||
//int position = id%size;
|
||||
|
||||
output[batch*n*size + id] = biases[filter];
|
||||
}
|
||||
|
||||
__kernel void learn_bias(int batch, int n, int size, __global float *delta, __global float *bias_updates)
|
||||
{
|
||||
__local float part[BLOCK];
|
||||
int i,b;
|
||||
int filter = get_group_id(0);
|
||||
int p = get_local_id(0);
|
||||
float sum = 0;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < size; i += BLOCK){
|
||||
int index = p + i + size*(filter + n*b);
|
||||
sum += (p+i < size) ? delta[index] : 0;
|
||||
}
|
||||
}
|
||||
part[p] = sum;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(p == 0){
|
||||
for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i];
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
#ifndef CONVOLUTIONAL_LAYER_H
|
||||
#define CONVOLUTIONAL_LAYER_H
|
||||
|
||||
#include "opencl.h"
|
||||
#include "cuda.h"
|
||||
#include "image.h"
|
||||
#include "activations.h"
|
||||
|
||||
@ -27,26 +27,28 @@ typedef struct {
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem filters_cl;
|
||||
cl_mem filter_updates_cl;
|
||||
float * filters_gpu;
|
||||
float * filter_updates_gpu;
|
||||
|
||||
cl_mem biases_cl;
|
||||
cl_mem bias_updates_cl;
|
||||
float * biases_gpu;
|
||||
float * bias_updates_gpu;
|
||||
|
||||
cl_mem col_image_cl;
|
||||
cl_mem delta_cl;
|
||||
cl_mem output_cl;
|
||||
float * col_image_gpu;
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
|
||||
ACTIVATION activation;
|
||||
} convolutional_layer;
|
||||
|
||||
#ifdef GPU
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in);
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl);
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, float * in);
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, float * in, float * delta_gpu);
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer);
|
||||
void push_convolutional_layer(convolutional_layer layer);
|
||||
void pull_convolutional_layer(convolutional_layer layer);
|
||||
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer);
|
||||
void bias_output_gpu(const convolutional_layer layer);
|
||||
#endif
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, float learning_rate, float momentum, float decay);
|
||||
@ -57,9 +59,14 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta);
|
||||
|
||||
void bias_output(const convolutional_layer layer);
|
||||
image get_convolutional_image(convolutional_layer layer);
|
||||
image get_convolutional_delta(convolutional_layer layer);
|
||||
image get_convolutional_filter(convolutional_layer layer, int i);
|
||||
|
||||
int convolutional_out_height(convolutional_layer layer);
|
||||
int convolutional_out_width(convolutional_layer layer);
|
||||
void learn_bias_convolutional_layer(convolutional_layer layer);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "cuda.h"
|
||||
#include "blas.h"
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
@ -35,7 +36,7 @@ cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type)
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
layer->output = calloc(1, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->delta_cl = cl_make_array(layer->delta, inputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
@ -62,55 +63,25 @@ void backward_cost_layer(const cost_layer layer, float *input, float *delta)
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
cl_kernel get_mask_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/axpy.cl", "mask", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void mask_ongpu(int n, cl_mem x, cl_mem mask, int mod)
|
||||
{
|
||||
cl_kernel kernel = get_mask_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(mask), (void*) &mask);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(mod), (void*) &mod);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {n};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
}
|
||||
|
||||
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
|
||||
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
|
||||
{
|
||||
if (!truth) return;
|
||||
|
||||
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
|
||||
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
|
||||
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
|
||||
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
|
||||
|
||||
if(layer.type==DETECTION){
|
||||
mask_ongpu(layer.inputs*layer.batch, layer.delta_cl, truth, 5);
|
||||
mask_ongpu(layer.inputs*layer.batch, layer.delta_gpu, truth, 5);
|
||||
}
|
||||
|
||||
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
|
||||
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
|
||||
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
||||
//printf("cost: %f\n", *layer.output);
|
||||
}
|
||||
|
||||
void backward_cost_layer_gpu(const cost_layer layer, cl_mem input, cl_mem delta)
|
||||
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta)
|
||||
{
|
||||
copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
|
||||
copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -1,6 +1,5 @@
|
||||
#ifndef COST_LAYER_H
|
||||
#define COST_LAYER_H
|
||||
#include "opencl.h"
|
||||
|
||||
typedef enum{
|
||||
SSE, DETECTION
|
||||
@ -13,7 +12,7 @@ typedef struct {
|
||||
float *output;
|
||||
COST_TYPE type;
|
||||
#ifdef GPU
|
||||
cl_mem delta_cl;
|
||||
float * delta_gpu;
|
||||
#endif
|
||||
} cost_layer;
|
||||
|
||||
@ -24,8 +23,8 @@ void forward_cost_layer(const cost_layer layer, float *input, float *truth);
|
||||
void backward_cost_layer(const cost_layer layer, float *input, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth);
|
||||
void backward_cost_layer_gpu(const cost_layer layer, cl_mem input, cl_mem delta);
|
||||
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth);
|
||||
void backward_cost_layer_gpu(const cost_layer layer, float * input, float * delta);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include "crop_layer.h"
|
||||
#include "cuda.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_crop_image(crop_layer layer)
|
||||
@ -22,7 +23,7 @@ crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int
|
||||
layer->crop_height = crop_height;
|
||||
layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_cl = cl_make_array(layer->output, crop_width*crop_height*c*batch);
|
||||
layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
@ -53,45 +54,3 @@ void forward_crop_layer(const crop_layer layer, float *input)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_kernel get_crop_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/crop_layer.cl", "forward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_crop_layer_gpu(crop_layer layer, cl_mem input)
|
||||
{
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height);
|
||||
int dw = rand()%(layer.w - layer.crop_width);
|
||||
int size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
||||
|
||||
cl_kernel kernel = get_crop_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_height), (void*) &layer.crop_height);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.crop_width), (void*) &layer.crop_width);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(dh), (void*) &dh);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(dw), (void*) &dw);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(flip), (void*) &flip);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -1,16 +0,0 @@
|
||||
__kernel void forward(__global float *input, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, __global float *output)
|
||||
{
|
||||
int id = get_global_id(0);
|
||||
int count = id;
|
||||
int j = id % crop_width;
|
||||
id /= crop_width;
|
||||
int i = id % crop_height;
|
||||
id /= crop_height;
|
||||
int k = id % c;
|
||||
id /= c;
|
||||
int b = id;
|
||||
int col = (flip) ? w - dw - j - 1 : j + dw;
|
||||
int row = i + dh;
|
||||
int index = col+w*(row+h*(k + c*b));
|
||||
output[count] = input[index];
|
||||
}
|
@ -1,7 +1,6 @@
|
||||
#ifndef CROP_LAYER_H
|
||||
#define CROP_LAYER_H
|
||||
|
||||
#include "opencl.h"
|
||||
#include "image.h"
|
||||
|
||||
typedef struct {
|
||||
@ -12,7 +11,7 @@ typedef struct {
|
||||
int flip;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
cl_mem output_cl;
|
||||
float *output_gpu;
|
||||
#endif
|
||||
} crop_layer;
|
||||
|
||||
@ -21,7 +20,7 @@ crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int
|
||||
void forward_crop_layer(const crop_layer layer, float *input);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_crop_layer_gpu(crop_layer layer, cl_mem input);
|
||||
void forward_crop_layer_gpu(crop_layer layer, float *input);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
41
src/crop_layer_kernels.cu
Normal file
41
src/crop_layer_kernels.cu
Normal file
@ -0,0 +1,41 @@
|
||||
extern "C" {
|
||||
#include "crop_layer.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
#define BLOCK 256
|
||||
|
||||
__global__ void forward_crop_layer_kernel(float *input, int size, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, float *output)
|
||||
{
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id >= size) return;
|
||||
|
||||
int count = id;
|
||||
int j = id % crop_width;
|
||||
id /= crop_width;
|
||||
int i = id % crop_height;
|
||||
id /= crop_height;
|
||||
int k = id % c;
|
||||
id /= c;
|
||||
int b = id;
|
||||
int col = (flip) ? w - dw - j - 1 : j + dw;
|
||||
int row = i + dh;
|
||||
int index = col+w*(row+h*(k + c*b));
|
||||
output[count] = input[index];
|
||||
}
|
||||
|
||||
extern "C" void forward_crop_layer_gpu(crop_layer layer, float *input)
|
||||
{
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height);
|
||||
int dw = rand()%(layer.w - layer.crop_width);
|
||||
int size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
||||
|
||||
dim3 dimBlock(BLOCK, 1, 1);
|
||||
dim3 dimGrid((size-1)/BLOCK + 1, 1, 1);
|
||||
|
||||
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.c, layer.h, layer.w,
|
||||
layer.crop_height, layer.crop_width, dh, dw, flip, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
99
src/cuda.c
Normal file
99
src/cuda.c
Normal file
@ -0,0 +1,99 @@
|
||||
#include "cuda.h"
|
||||
#include "utils.h"
|
||||
#include "blas.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
int gpu_index = 0;
|
||||
|
||||
void check_error(cudaError_t status)
|
||||
{
|
||||
if (status != cudaSuccess)
|
||||
{
|
||||
const char *s = cudaGetErrorString(status);
|
||||
char buffer[256];
|
||||
printf("CUDA Error: %s\n", s);
|
||||
snprintf(buffer, 256, "CUDA Error: %s", s);
|
||||
error(buffer);
|
||||
}
|
||||
}
|
||||
|
||||
dim3 cuda_gridsize(size_t n){
|
||||
size_t k = (n-1) / BLOCK + 1;
|
||||
size_t x = k;
|
||||
size_t y = 1;
|
||||
if(x > 65535){
|
||||
x = ceil(sqrt(k));
|
||||
y = (n-1)/(x*BLOCK) + 1;
|
||||
}
|
||||
dim3 d = {x, y, 1};
|
||||
//printf("%ld %ld %ld %ld\n", n, x, y, x*y*BLOCK);
|
||||
return d;
|
||||
}
|
||||
|
||||
cublasHandle_t blas_handle()
|
||||
{
|
||||
static int init = 0;
|
||||
static cublasHandle_t handle;
|
||||
if(!init) {
|
||||
cublasCreate(&handle);
|
||||
init = 1;
|
||||
}
|
||||
return handle;
|
||||
}
|
||||
|
||||
float *cuda_make_array(float *x, int n)
|
||||
{
|
||||
float *x_gpu;
|
||||
size_t size = sizeof(float)*n;
|
||||
cudaError_t status = cudaMalloc((void **)&x_gpu, size);
|
||||
check_error(status);
|
||||
if(x){
|
||||
status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
|
||||
check_error(status);
|
||||
}
|
||||
return x_gpu;
|
||||
}
|
||||
|
||||
float cuda_compare(float *x_gpu, float *x, int n, char *s)
|
||||
{
|
||||
float *tmp = calloc(n, sizeof(float));
|
||||
cuda_pull_array(x_gpu, tmp, n);
|
||||
//int i;
|
||||
//for(i = 0; i < n; ++i) printf("%f %f\n", tmp[i], x[i]);
|
||||
axpy_cpu(n, -1, x, 1, tmp, 1);
|
||||
float err = dot_cpu(n, tmp, 1, tmp, 1);
|
||||
printf("Error %s: %f\n", s, sqrt(err/n));
|
||||
free(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
int *cuda_make_int_array(int n)
|
||||
{
|
||||
int *x_gpu;
|
||||
size_t size = sizeof(int)*n;
|
||||
cudaError_t status = cudaMalloc((void **)&x_gpu, size);
|
||||
check_error(status);
|
||||
return x_gpu;
|
||||
}
|
||||
|
||||
void cuda_free(float *x_gpu)
|
||||
{
|
||||
cudaError_t status = cudaFree(x_gpu);
|
||||
check_error(status);
|
||||
}
|
||||
|
||||
void cuda_push_array(float *x_gpu, float *x, int n)
|
||||
{
|
||||
size_t size = sizeof(float)*n;
|
||||
cudaError_t status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice);
|
||||
check_error(status);
|
||||
}
|
||||
|
||||
void cuda_pull_array(float *x_gpu, float *x, int n)
|
||||
{
|
||||
size_t size = sizeof(float)*n;
|
||||
cudaError_t status = cudaMemcpy(x, x_gpu, size, cudaMemcpyDeviceToHost);
|
||||
check_error(status);
|
||||
}
|
||||
|
||||
|
21
src/cuda.h
Normal file
21
src/cuda.h
Normal file
@ -0,0 +1,21 @@
|
||||
#ifndef CUDA_H
|
||||
#define CUDA_H
|
||||
|
||||
#define BLOCK 256
|
||||
|
||||
#include "cuda_runtime.h"
|
||||
#include "cublas_v2.h"
|
||||
|
||||
extern int gpu_index;
|
||||
|
||||
void check_error(cudaError_t status);
|
||||
cublasHandle_t blas_handle();
|
||||
float *cuda_make_array(float *x, int n);
|
||||
int *cuda_make_int_array(int n);
|
||||
void cuda_push_array(float *x_gpu, float *x, int n);
|
||||
void cuda_pull_array(float *x_gpu, float *x, int n);
|
||||
void cuda_free(float *x_gpu);
|
||||
float cuda_compare(float *x_gpu, float *x, int n, char *s);
|
||||
dim3 cuda_gridsize(size_t n);
|
||||
|
||||
#endif
|
@ -239,6 +239,7 @@ void *load_in_thread(void *ptr)
|
||||
{
|
||||
struct load_args a = *(struct load_args*)ptr;
|
||||
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
|
||||
normalize_data_rows(*a.d);
|
||||
free(ptr);
|
||||
return 0;
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "dropout_layer.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
@ -14,8 +15,8 @@ dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
|
||||
layer->rand = calloc(inputs*batch, sizeof(float));
|
||||
layer->scale = 1./(1.-probability);
|
||||
#ifdef GPU
|
||||
layer->output_cl = cl_make_array(layer->output, inputs*batch);
|
||||
layer->rand_cl = cl_make_array(layer->rand, inputs*batch);
|
||||
layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
|
||||
layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
@ -42,61 +43,3 @@ void backward_dropout_layer(dropout_layer layer, float *delta)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_kernel get_dropout_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/dropout_layer.cl", "yoloswag420blazeit360noscope", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input)
|
||||
{
|
||||
int j;
|
||||
int size = layer.inputs*layer.batch;
|
||||
for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
|
||||
cl_write_array(layer.rand_cl, layer.rand, layer.inputs*layer.batch);
|
||||
|
||||
cl_kernel kernel = get_dropout_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta)
|
||||
{
|
||||
if(!delta) return;
|
||||
int size = layer.inputs*layer.batch;
|
||||
|
||||
cl_kernel kernel = get_dropout_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.rand_cl), (void*) &layer.rand_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.probability), (void*) &layer.probability);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.scale), (void*) &layer.scale);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {size};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
#endif
|
||||
|
@ -1,5 +0,0 @@
|
||||
__kernel void yoloswag420blazeit360noscope(__global float *input, __global float *rand, float prob, float scale, __global float *output)
|
||||
{
|
||||
int id = get_global_id(0);
|
||||
output[id] = (rand[id] < prob) ? 0 : input[id]*scale;
|
||||
}
|
@ -1,6 +1,5 @@
|
||||
#ifndef DROPOUT_LAYER_H
|
||||
#define DROPOUT_LAYER_H
|
||||
#include "opencl.h"
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
@ -10,8 +9,8 @@ typedef struct{
|
||||
float *rand;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
cl_mem rand_cl;
|
||||
cl_mem output_cl;
|
||||
float * rand_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
} dropout_layer;
|
||||
|
||||
@ -21,8 +20,8 @@ void forward_dropout_layer(dropout_layer layer, float *input);
|
||||
void backward_dropout_layer(dropout_layer layer, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, cl_mem input);
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, cl_mem delta);
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, float * input);
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, float * delta);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
33
src/dropout_layer_kernels.cu
Normal file
33
src/dropout_layer_kernels.cu
Normal file
@ -0,0 +1,33 @@
|
||||
extern "C" {
|
||||
#include "dropout_layer.h"
|
||||
#include "cuda.h"
|
||||
#include "utils.h"
|
||||
}
|
||||
|
||||
__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale, float *output)
|
||||
{
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id < size) output[id] = (rand[id] < prob) ? 0 : input[id]*scale;
|
||||
}
|
||||
|
||||
extern "C" void forward_dropout_layer_gpu(dropout_layer layer, float * input)
|
||||
{
|
||||
int j;
|
||||
int size = layer.inputs*layer.batch;
|
||||
for(j = 0; j < size; ++j) layer.rand[j] = rand_uniform();
|
||||
cuda_push_array(layer.rand_gpu, layer.rand, layer.inputs*layer.batch);
|
||||
|
||||
yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(input, size, layer.rand_gpu, layer.probability,
|
||||
layer.scale, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void backward_dropout_layer_gpu(dropout_layer layer, float *delta)
|
||||
{
|
||||
if(!delta) return;
|
||||
int size = layer.inputs*layer.batch;
|
||||
|
||||
yoloswag420blazeit360noscope<<<cuda_gridsize(size), BLOCK>>>(delta, size, layer.rand_gpu, layer.probability,
|
||||
layer.scale, delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
356
src/gemm.c
356
src/gemm.c
@ -1,5 +1,44 @@
|
||||
#include "mini_blas.h"
|
||||
#include "gemm.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
|
||||
float *random_matrix(int rows, int cols)
|
||||
{
|
||||
int i;
|
||||
float *m = calloc(rows*cols, sizeof(float));
|
||||
for(i = 0; i < rows*cols; ++i){
|
||||
m[i] = (float)rand()/RAND_MAX;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<10; ++i){
|
||||
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
|
||||
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
@ -102,176 +141,18 @@ void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
#include "opencl.h"
|
||||
#include <math.h>
|
||||
|
||||
#ifdef CLBLAS
|
||||
#include <clBLAS.h>
|
||||
#endif
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define BLOCK 1
|
||||
#else
|
||||
#define BLOCK 16
|
||||
#endif
|
||||
|
||||
cl_kernel get_gemm_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) );
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_gemm_nt_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) );
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_gemm_tn_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) );
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_gemm_nn_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) );
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
#define TILE 64
|
||||
#define TILE_K 16
|
||||
#define THREADS 64
|
||||
|
||||
cl_kernel get_gemm_nn_fast_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm_fast.cl", "gemm_nn_fast", "-D TILE=" STR(TILE)
|
||||
" -cl-nv-verbose "
|
||||
" -D TILE_K=" STR(TILE_K)
|
||||
" -D THREADS=" STR(THREADS));
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int lda,
|
||||
cl_mem B_gpu, int ldb,
|
||||
float *A_gpu, int lda,
|
||||
float *B_gpu, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int ldc)
|
||||
float *C_gpu, int ldc)
|
||||
{
|
||||
gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
|
||||
}
|
||||
|
||||
void gemm_ongpu_fast(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int lda,
|
||||
cl_mem B_gpu, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int ldc)
|
||||
{
|
||||
int a_off = 0;
|
||||
int b_off = 0;
|
||||
int c_off = 0;
|
||||
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
|
||||
cl_kernel gemm_kernel = get_gemm_nn_fast_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {THREADS*((N-1)/TILE + 1), (M-1)/TILE + 1};
|
||||
const size_t local_size[] = {THREADS, 1};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int a_off, int lda,
|
||||
cl_mem B_gpu, int b_off, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int c_off, int ldc)
|
||||
{
|
||||
#ifdef CLBLAS
|
||||
cl_command_queue queue = cl.queue;
|
||||
cl_event event;
|
||||
cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event);
|
||||
check_error(cl);
|
||||
#else
|
||||
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
|
||||
cl_kernel gemm_kernel = get_gemm_kernel();
|
||||
if(!TA && !TB) gemm_kernel = get_gemm_nn_kernel();
|
||||
if(!TA && TB) gemm_kernel = get_gemm_nt_kernel();
|
||||
if(TA && !TB) gemm_kernel = get_gemm_tn_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK};
|
||||
const size_t local_size[] = {BLOCK, BLOCK};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
#endif
|
||||
cublasHandle_t handle = blas_handle();
|
||||
cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
|
||||
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
|
||||
check_error(status);
|
||||
}
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
@ -280,37 +161,16 @@ void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
cl_context context = cl.context;
|
||||
cl_command_queue queue = cl.queue;
|
||||
float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
|
||||
float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
|
||||
float *C_gpu = cuda_make_array(C, ldc*M);
|
||||
|
||||
size_t size = sizeof(float)*(TA ? lda*K:lda*M);
|
||||
cl_mem A_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, A, &cl.error);
|
||||
check_error(cl);
|
||||
gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
|
||||
size = sizeof(float)*(TB ? ldb*N:ldb*K);
|
||||
cl_mem B_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, B, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
size = sizeof(float)*(ldc*M);
|
||||
cl_mem C_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
size, C, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
// TODO
|
||||
//gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
gemm_ongpu_fast(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
|
||||
clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
clReleaseMemObject(A_gpu);
|
||||
clReleaseMemObject(B_gpu);
|
||||
clReleaseMemObject(C_gpu);
|
||||
cuda_pull_array(C_gpu, C, ldc*M);
|
||||
cuda_free(A_gpu);
|
||||
cuda_free(B_gpu);
|
||||
cuda_free(C_gpu);
|
||||
}
|
||||
|
||||
#include <stdio.h>
|
||||
@ -353,60 +213,29 @@ void time_ongpu(int TA, int TB, int m, int k, int n)
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
|
||||
cl_mem a_cl = cl_make_array(a, m*k);
|
||||
cl_mem b_cl = cl_make_array(b, k*n);
|
||||
cl_mem c_cl = cl_make_array(c, m*n);
|
||||
float *a_cl = cuda_make_array(a, m*k);
|
||||
float *b_cl = cuda_make_array(b, k*n);
|
||||
float *c_cl = cuda_make_array(c, m*n);
|
||||
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<iter; ++i){
|
||||
gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
||||
cudaThreadSynchronize();
|
||||
}
|
||||
double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
||||
double gflop = flop/pow(10., 9);
|
||||
end = clock();
|
||||
double seconds = sec(end-start);
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
|
||||
clReleaseMemObject(a_cl);
|
||||
clReleaseMemObject(b_cl);
|
||||
clReleaseMemObject(c_cl);
|
||||
cuda_free(a_cl);
|
||||
cuda_free(b_cl);
|
||||
cuda_free(c_cl);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void time_ongpu_fast(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
int iter = 10;
|
||||
float *a = random_matrix(m,k);
|
||||
float *b = random_matrix(k,n);
|
||||
|
||||
int lda = (!TA)?k:m;
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
|
||||
cl_mem a_cl = cl_make_array(a, m*k);
|
||||
cl_mem b_cl = cl_make_array(b, k*n);
|
||||
cl_mem c_cl = cl_make_array(c, m*n);
|
||||
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<iter; ++i){
|
||||
gemm_ongpu_fast(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
||||
}
|
||||
double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
||||
double gflop = flop/pow(10., 9);
|
||||
end = clock();
|
||||
double seconds = sec(end-start);
|
||||
printf("Fast Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
|
||||
clReleaseMemObject(a_cl);
|
||||
clReleaseMemObject(b_cl);
|
||||
clReleaseMemObject(c_cl);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
@ -429,6 +258,7 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
||||
//printf("GPU\n");
|
||||
//pm(m, n, c_gpu);
|
||||
|
||||
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
//printf("\n\nCPU\n");
|
||||
//pm(m, n, c);
|
||||
@ -444,9 +274,8 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
free(c_gpu);
|
||||
}
|
||||
|
||||
void test_gpu_blas()
|
||||
int test_gpu_blas()
|
||||
{
|
||||
/*
|
||||
test_gpu_accuracy(0,0,10,576,75);
|
||||
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
@ -458,73 +287,20 @@ void test_gpu_blas()
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
*/
|
||||
|
||||
test_gpu_accuracy(0,0,128,128,128);
|
||||
test_gpu_accuracy(0,0,10,10,10);
|
||||
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,192,729,1600);
|
||||
time_ongpu_fast(0,0,192,729,1600);
|
||||
time_ongpu(0,0,384,196,1728);
|
||||
time_ongpu_fast(0,0,384,196,1728);
|
||||
time_ongpu(0,0,256,196,3456);
|
||||
time_ongpu_fast(0,0,256,196,3456);
|
||||
time_ongpu(0,0,256,196,2304);
|
||||
time_ongpu_fast(0,0,256,196,2304);
|
||||
time_ongpu(0,0,128,4096,12544);
|
||||
time_ongpu_fast(0,0,128,4096,12544);
|
||||
time_ongpu(0,0,128,4096,4096);
|
||||
time_ongpu_fast(0,0,128,4096,4096);
|
||||
// time_ongpu(1,0,2304,196,256);
|
||||
// time_ongpu_fast(1,0,2304,196,256);
|
||||
// time_ongpu(0,1,256,2304,196);
|
||||
// time_ongpu_fast(0,1,256,2304,196);
|
||||
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
|
||||
/*
|
||||
test_gpu_accuracy(0,0,131,4093,1199);
|
||||
test_gpu_accuracy(0,1,131,4093,1199);
|
||||
test_gpu_accuracy(1,0,131,4093,1199);
|
||||
test_gpu_accuracy(1,1,131,4093,1199);
|
||||
*/
|
||||
/*
|
||||
|
||||
time_ongpu(0,0,1024,1024,1024);
|
||||
time_ongpu(0,1,1024,1024,1024);
|
||||
time_ongpu(1,0,1024,1024,1024);
|
||||
time_ongpu(1,1,1024,1024,1024);
|
||||
|
||||
time_ongpu(0,0,128,4096,1200);
|
||||
time_ongpu(0,1,128,4096,1200);
|
||||
time_ongpu(1,0,128,4096,1200);
|
||||
time_ongpu(1,1,128,4096,1200);
|
||||
*/
|
||||
|
||||
/*
|
||||
time_gpu_random_matrix(0,0,1000,1000,100);
|
||||
time_random_matrix(0,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(0,1,1000,1000,100);
|
||||
time_random_matrix(0,1,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,0,1000,1000,100);
|
||||
time_random_matrix(1,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,1,1000,1000,100);
|
||||
time_random_matrix(1,1,1000,1000,100);
|
||||
*/
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
217
src/gemm.cl
217
src/gemm.cl
@ -1,217 +0,0 @@
|
||||
__kernel void gemm_tn(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
__local float Asub[BLOCK][BLOCK];
|
||||
__local float Bsub[BLOCK][BLOCK];
|
||||
|
||||
int col = get_global_id(0);
|
||||
int row = get_global_id(1);
|
||||
|
||||
int col_block = get_group_id(0);
|
||||
int row_block = get_group_id(1);
|
||||
|
||||
col = (col < N) ? col : N - 1;
|
||||
row = (row < M) ? row : M - 1;
|
||||
|
||||
int x = get_local_id(0);
|
||||
int y = get_local_id(1);
|
||||
|
||||
int i,j;
|
||||
|
||||
float val = 0;
|
||||
float orig = C[row*ldc + col];
|
||||
|
||||
for(i = 0; i < K; i += BLOCK){
|
||||
|
||||
int arow = y + i;
|
||||
int acol = x + row_block*BLOCK;
|
||||
|
||||
int brow = y + i;
|
||||
int bcol = col;
|
||||
|
||||
arow = (arow < K) ? arow : K-1;
|
||||
acol = (acol < M) ? acol : M-1;
|
||||
brow = (brow < K) ? brow : K-1;
|
||||
|
||||
int aind = arow*lda + acol;
|
||||
int bind = brow*ldb + bcol;
|
||||
|
||||
Asub[x][y] = A[aind];
|
||||
Bsub[y][x] = B[bind];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(j = 0; j < BLOCK && i+j<K; ++j){
|
||||
val += Asub[y][j]*Bsub[j][x];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
C[row*ldc+col] = ALPHA*val + BETA*orig;
|
||||
}
|
||||
|
||||
__kernel void gemm_nt(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
__local float Asub[BLOCK][BLOCK];
|
||||
__local float Bsub[BLOCK][BLOCK];
|
||||
|
||||
|
||||
int col = get_global_id(0);
|
||||
int row = get_global_id(1);
|
||||
|
||||
int col_block = get_group_id(0);
|
||||
int row_block = get_group_id(1);
|
||||
|
||||
col = (col < N) ? col : N - 1;
|
||||
row = (row < M) ? row : M - 1;
|
||||
|
||||
int x = get_local_id(0);
|
||||
int y = get_local_id(1);
|
||||
|
||||
int i,j;
|
||||
|
||||
float val = 0;
|
||||
float orig = C[row*ldc + col];
|
||||
|
||||
for(i = 0; i < K; i += BLOCK){
|
||||
|
||||
int arow = row;
|
||||
int acol = x + i;
|
||||
|
||||
int brow = col_block*BLOCK + y;
|
||||
int bcol = x + i;
|
||||
|
||||
brow = (brow < N) ? brow : N-1;
|
||||
acol = (acol < K) ? acol : K-1;
|
||||
bcol = (bcol < K) ? bcol : K-1;
|
||||
|
||||
int aind = arow*lda + acol;
|
||||
int bind = brow*ldb + bcol;
|
||||
|
||||
Asub[y][x] = A[aind];
|
||||
Bsub[x][y] = B[bind];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(j = 0; j < BLOCK && i+j<K; ++j){
|
||||
val += Asub[y][j]*Bsub[j][x];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
C[row*ldc+col] = ALPHA*val + BETA*orig;
|
||||
}
|
||||
|
||||
__kernel void gemm_nn(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
__local float Asub[BLOCK][BLOCK];
|
||||
__local float Bsub[BLOCK][BLOCK];
|
||||
|
||||
int col = get_global_id(0);
|
||||
int row = get_global_id(1);
|
||||
|
||||
col = (col < N) ? col : N - 1;
|
||||
row = (row < M) ? row : M - 1;
|
||||
|
||||
int x = get_local_id(0);
|
||||
int y = get_local_id(1);
|
||||
|
||||
int i,j;
|
||||
|
||||
float orig = C[row*ldc+col];
|
||||
float val = 0;
|
||||
|
||||
for(i = 0; i < K; i += BLOCK){
|
||||
|
||||
int arow = row;
|
||||
int acol = x + i;
|
||||
|
||||
int brow = y + i;
|
||||
int bcol = col;
|
||||
|
||||
acol = (acol < K) ? acol : K-1;
|
||||
brow = (brow < K) ? brow : K-1;
|
||||
|
||||
int aind = arow*lda + acol;
|
||||
int bind = brow*ldb + bcol;
|
||||
|
||||
Asub[y][x] = A[aind];
|
||||
Bsub[y][x] = B[bind];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(j = 0; j < BLOCK && i+j<K; ++j){
|
||||
val += Asub[y][j]*Bsub[j][x];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
C[row*ldc+col] = ALPHA*val + BETA*orig;
|
||||
}
|
||||
|
||||
__kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
__local float Asub[BLOCK][BLOCK];
|
||||
__local float Bsub[BLOCK][BLOCK];
|
||||
|
||||
float val = 0;
|
||||
|
||||
int row_block = get_group_id(1);
|
||||
int col_block = get_group_id(0);
|
||||
|
||||
int sub_row = get_local_id(1);
|
||||
int sub_col = get_local_id(0);
|
||||
|
||||
int row = row_block*BLOCK + sub_row;
|
||||
int col = col_block*BLOCK + sub_col;
|
||||
|
||||
int i,j;
|
||||
for(i = 0; i < K; i += BLOCK){
|
||||
int arow = row_block*BLOCK + sub_row;
|
||||
int acol = i + sub_col;
|
||||
|
||||
int brow = i + sub_row;
|
||||
int bcol = col_block*BLOCK + sub_col;
|
||||
|
||||
if(arow < M && acol < K)Asub[sub_row][sub_col] = TA ? A[arow + acol*lda] : A[arow*lda + acol];
|
||||
if(brow < K && bcol < N)Bsub[sub_row][sub_col] = TB ? B[brow + bcol*ldb] : B[brow*ldb + bcol];
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(j = 0; j < BLOCK && i+j<K; ++j){
|
||||
val += Asub[sub_row][j]*Bsub[j][sub_col];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if(row < M && col < N){
|
||||
C[row*ldc+col] = ALPHA*val + BETA*C[row*ldc+col];
|
||||
}
|
||||
}
|
29
src/gemm.h
Normal file
29
src/gemm.h
Normal file
@ -0,0 +1,29 @@
|
||||
#ifndef GEMM_H
|
||||
#define GEMM_H
|
||||
|
||||
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
|
||||
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
|
||||
#ifdef GPU
|
||||
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A_gpu, int lda,
|
||||
float *B_gpu, int ldb,
|
||||
float BETA,
|
||||
float *C_gpu, int ldc);
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
#endif
|
||||
#endif
|
@ -1,76 +0,0 @@
|
||||
|
||||
__kernel void gemm_nn_fast(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
int i, j, k, x, y;
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
|
||||
__local float Asub[TILE] [TILE_K];
|
||||
__local float Bsub[TILE_K][TILE];
|
||||
|
||||
int ctile = get_group_id(0);
|
||||
int rtile = get_group_id(1);
|
||||
|
||||
float Areg[TILE];
|
||||
float acc[TILE][TILE/THREADS];
|
||||
|
||||
A += rtile*TILE*lda;
|
||||
B += ctile*TILE;
|
||||
C += rtile*TILE*ldc + ctile*TILE;
|
||||
|
||||
for(i = 0; i < TILE; ++i){
|
||||
for(j = 0; j < TILE/THREADS; ++j){
|
||||
acc[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
int offset = get_local_id(0);
|
||||
|
||||
for(i = 0; i < K; i += TILE_K){
|
||||
for(j = 0; j < TILE*TILE_K; j += THREADS){
|
||||
int index = j+offset;
|
||||
|
||||
int row = index / TILE_K;
|
||||
int col = index % TILE_K;
|
||||
Asub[row][col] = A[row*lda + col];
|
||||
|
||||
row = index / TILE;
|
||||
col = index % TILE;
|
||||
Bsub[row][col] = B[row*ldb + col];
|
||||
}
|
||||
|
||||
A += TILE_K;
|
||||
B += TILE_K*ldb;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(k = 0; k < TILE_K; ++k){
|
||||
#pragma unroll
|
||||
for(y = 0; y < TILE; ++y){
|
||||
Areg[y] = Asub[y][k];
|
||||
}
|
||||
for(x = 0; x < TILE; x += THREADS){
|
||||
float Breg = Bsub[k][x+offset];
|
||||
#pragma unroll
|
||||
for(y = 0; y < TILE; ++y){
|
||||
acc[y][x/THREADS] += Breg * Areg[y];
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
for(i = 0; i < TILE; ++i){
|
||||
for(j = 0; j < TILE/THREADS; ++j){
|
||||
int col = j*THREADS + offset;
|
||||
int row = i;
|
||||
C[row*ldc+col] = ALPHA*acc[i][j] + BETA*C[row*ldc+col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
103
src/im2col.c
103
src/im2col.c
@ -1,4 +1,4 @@
|
||||
#include "mini_blas.h"
|
||||
#include "im2col.h"
|
||||
#include <stdio.h>
|
||||
inline float im2col_get_pixel(float *im, int height, int width, int channels,
|
||||
int row, int col, int channel, int pad)
|
||||
@ -42,104 +42,3 @@ void im2col_cpu(float* data_im,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
#include "opencl.h"
|
||||
#include <math.h>
|
||||
|
||||
cl_kernel get_im2col_pad_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel im2col_kernel;
|
||||
if(!init){
|
||||
im2col_kernel = get_kernel("src/im2col.cl", "im2col_pad", 0);
|
||||
init = 1;
|
||||
}
|
||||
return im2col_kernel;
|
||||
}
|
||||
|
||||
cl_kernel get_im2col_nopad_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel im2col_kernel;
|
||||
if(!init){
|
||||
im2col_kernel = get_kernel("src/im2col.cl", "im2col_nopad", 0);
|
||||
init = 1;
|
||||
}
|
||||
return im2col_kernel;
|
||||
}
|
||||
|
||||
|
||||
void im2col_ongpu(cl_mem data_im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, cl_mem data_col)
|
||||
{
|
||||
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
cl_kernel kernel = get_im2col_nopad_kernel();
|
||||
|
||||
if (pad){
|
||||
height_col = 1 + (height-1) / stride;
|
||||
width_col = 1 + (width-1) / stride;
|
||||
kernel = get_im2col_pad_kernel();
|
||||
}
|
||||
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(data_im), (void*) &data_im);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(offset), (void*) &offset);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(channels), (void*) &channels);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(height), (void*) &height);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(width), (void*) &width);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(ksize), (void*) &ksize);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(stride), (void*) &stride);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(data_col), (void*) &data_col);
|
||||
check_error(cl);
|
||||
|
||||
size_t global_size = channels_col*height_col*width_col;
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0,
|
||||
&global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
/*
|
||||
void im2col_gpu(float *data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_col)
|
||||
{
|
||||
cl_context context = cl.context;
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
size_t size = sizeof(float)*(channels*height*width*batch);
|
||||
cl_mem im_gpu = clCreateBuffer(context,
|
||||
CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, data_im, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
|
||||
size = sizeof(float)*(height_col*width_col*channels_col*batch);
|
||||
cl_mem col_gpu = clCreateBuffer(context,
|
||||
CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR,
|
||||
size, data_col, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
im2col_ongpu(im_gpu, batch, channels, height, width,
|
||||
ksize, stride, pad, col_gpu);
|
||||
|
||||
clEnqueueReadBuffer(queue, col_gpu, CL_TRUE, 0, size, data_col, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
clReleaseMemObject(col_gpu);
|
||||
clReleaseMemObject(im_gpu);
|
||||
}
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
15
src/im2col.h
Normal file
15
src/im2col.h
Normal file
@ -0,0 +1,15 @@
|
||||
#ifndef IM2COL_H
|
||||
#define IM2COL_H
|
||||
|
||||
void im2col_cpu(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col);
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void im2col_ongpu(float *im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad,float *data_col);
|
||||
|
||||
#endif
|
||||
#endif
|
@ -1,7 +1,11 @@
|
||||
extern "C" {
|
||||
#include "im2col.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__kernel void im2col_pad(__global float *im, int offset,
|
||||
__global__ void im2col_pad_kernel(float *im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, __global float *data_col)
|
||||
int ksize, int stride, float *data_col)
|
||||
{
|
||||
int c,h,w;
|
||||
int height_col = 1 + (height-1) / stride;
|
||||
@ -10,7 +14,10 @@ __kernel void im2col_pad(__global float *im, int offset,
|
||||
|
||||
int pad = ksize/2;
|
||||
|
||||
int id = get_global_id(0);
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
if (id >= col_size) return;
|
||||
|
||||
int col_index = id;
|
||||
w = id % width_col;
|
||||
id /= width_col;
|
||||
@ -19,7 +26,6 @@ __kernel void im2col_pad(__global float *im, int offset,
|
||||
c = id % channels_col;
|
||||
id /= channels_col;
|
||||
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int im_channel = c / ksize / ksize;
|
||||
@ -32,16 +38,19 @@ __kernel void im2col_pad(__global float *im, int offset,
|
||||
data_col[col_index] = val;
|
||||
}
|
||||
|
||||
__kernel void im2col_nopad(__global float *im, int offset,
|
||||
__global__ void im2col_nopad_kernel(float *im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, __global float *data_col)
|
||||
int ksize, int stride, float *data_col)
|
||||
{
|
||||
int c,h,w;
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
|
||||
int id = get_global_id(0);
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
if (id >= col_size) return;
|
||||
|
||||
int col_index = id;
|
||||
w = id % width_col;
|
||||
id /= width_col;
|
||||
@ -50,7 +59,6 @@ __kernel void im2col_nopad(__global float *im, int offset,
|
||||
c = id % channels_col;
|
||||
id /= channels_col;
|
||||
|
||||
int col_size = height_col*width_col*channels_col;
|
||||
int w_offset = c % ksize;
|
||||
int h_offset = (c / ksize) % ksize;
|
||||
int im_channel = c / ksize / ksize;
|
||||
@ -62,3 +70,24 @@ __kernel void im2col_nopad(__global float *im, int offset,
|
||||
|
||||
data_col[col_index] = val;
|
||||
}
|
||||
|
||||
extern "C" void im2col_ongpu(float *im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_col)
|
||||
{
|
||||
|
||||
int height_col = (height - ksize) / stride + 1;
|
||||
int width_col = (width - ksize) / stride + 1;
|
||||
int channels_col = channels * ksize * ksize;
|
||||
|
||||
if (pad){
|
||||
height_col = 1 + (height-1) / stride;
|
||||
width_col = 1 + (width-1) / stride;
|
||||
}
|
||||
|
||||
size_t n = channels_col*height_col*width_col;
|
||||
|
||||
if(pad)im2col_pad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, offset, channels, height, width, ksize, stride, data_col);
|
||||
else im2col_nopad_kernel<<<cuda_gridsize(n),BLOCK>>>(im, offset, channels, height, width, ksize, stride, data_col);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
@ -1,4 +1,5 @@
|
||||
#include "maxpool_layer.h"
|
||||
#include "cuda.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_maxpool_image(maxpool_layer layer)
|
||||
@ -32,9 +33,9 @@ maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int
|
||||
layer->output = calloc(output_size, sizeof(float));
|
||||
layer->delta = calloc(output_size, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->indexes_cl = cl_make_int_array(layer->indexes, output_size);
|
||||
layer->output_cl = cl_make_array(layer->output, output_size);
|
||||
layer->delta_cl = cl_make_array(layer->delta, output_size);
|
||||
layer->indexes_gpu = cuda_make_int_array(output_size);
|
||||
layer->output_gpu = cuda_make_array(layer->output, output_size);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, output_size);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
@ -98,74 +99,3 @@ void backward_maxpool_layer(const maxpool_layer layer, float *delta)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_kernel get_forward_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/maxpool_layer.cl", "forward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input)
|
||||
{
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
cl_kernel kernel = get_forward_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {h*w*c*layer.batch};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
cl_kernel get_backward_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/maxpool_layer.cl", "backward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta)
|
||||
{
|
||||
cl_kernel kernel = get_backward_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.h*layer.w*layer.c*layer.batch};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -2,7 +2,7 @@
|
||||
#define MAXPOOL_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
#include "opencl.h"
|
||||
#include "cuda.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
@ -13,9 +13,9 @@ typedef struct {
|
||||
float *delta;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
cl_mem indexes_cl;
|
||||
cl_mem output_cl;
|
||||
cl_mem delta_cl;
|
||||
int *indexes_gpu;
|
||||
float *output_gpu;
|
||||
float *delta_gpu;
|
||||
#endif
|
||||
} maxpool_layer;
|
||||
|
||||
@ -26,8 +26,8 @@ void forward_maxpool_layer(const maxpool_layer layer, float *input);
|
||||
void backward_maxpool_layer(const maxpool_layer layer, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input);
|
||||
void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta);
|
||||
void forward_maxpool_layer_gpu(maxpool_layer layer, float * input);
|
||||
void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -1,11 +1,17 @@
|
||||
extern "C" {
|
||||
#include "maxpool_layer.h"
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__kernel void forward(int in_h, int in_w, int in_c, int stride, int size, __global float *input, __global float *output, __global int *indexes)
|
||||
__global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, float *input, float *output, int *indexes)
|
||||
{
|
||||
int h = (in_h-1)/stride + 1;
|
||||
int w = (in_w-1)/stride + 1;
|
||||
int c = in_c;
|
||||
|
||||
int id = get_global_id(0);
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id >= n) return;
|
||||
|
||||
int j = id % w;
|
||||
id /= w;
|
||||
int i = id % h;
|
||||
@ -37,14 +43,16 @@ __kernel void forward(int in_h, int in_w, int in_c, int stride, int size, __glob
|
||||
indexes[out_index] = max_i;
|
||||
}
|
||||
|
||||
__kernel void backward(int in_h, int in_w, int in_c, int stride, int size, __global float *delta, __global float *prev_delta, __global int *indexes)
|
||||
__global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, float *delta, float *prev_delta, int *indexes)
|
||||
{
|
||||
int h = (in_h-1)/stride + 1;
|
||||
int w = (in_w-1)/stride + 1;
|
||||
int c = in_c;
|
||||
int area = (size-1)/stride;
|
||||
|
||||
int id = get_global_id(0);
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(id >= n) return;
|
||||
|
||||
int index = id;
|
||||
int j = id % in_w;
|
||||
id /= in_w;
|
||||
@ -71,3 +79,24 @@ __kernel void backward(int in_h, int in_w, int in_c, int stride, int size, __glo
|
||||
}
|
||||
prev_delta[index] = d;
|
||||
}
|
||||
|
||||
extern "C" void forward_maxpool_layer_gpu(maxpool_layer layer, float *input)
|
||||
{
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
|
||||
size_t n = h*w*c*layer.batch;
|
||||
|
||||
forward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, input, layer.output_gpu, layer.indexes_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void backward_maxpool_layer_gpu(maxpool_layer layer, float * delta)
|
||||
{
|
||||
size_t n = layer.h*layer.w*layer.c*layer.batch;
|
||||
|
||||
backward_maxpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.h, layer.w, layer.c, layer.stride, layer.size, layer.delta_gpu, delta, layer.indexes_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
@ -1,67 +0,0 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
#include <string.h>
|
||||
#include "mini_blas.h"
|
||||
|
||||
void pm(int M, int N, float *A)
|
||||
{
|
||||
int i,j;
|
||||
for(i =0 ; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
printf("%10.6f, ", A[i*N+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
float *random_matrix(int rows, int cols)
|
||||
{
|
||||
int i;
|
||||
float *m = calloc(rows*cols, sizeof(float));
|
||||
for(i = 0; i < rows*cols; ++i){
|
||||
m[i] = (float)rand()/RAND_MAX;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<10; ++i){
|
||||
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_blas()
|
||||
{
|
||||
|
||||
time_random_matrix(0,0,100,100,100);
|
||||
time_random_matrix(1,0,100,100,100);
|
||||
time_random_matrix(0,1,100,100,100);
|
||||
time_random_matrix(1,1,100,100,100);
|
||||
|
||||
time_random_matrix(0,0,1000,100,100);
|
||||
time_random_matrix(1,0,1000,100,100);
|
||||
time_random_matrix(0,1,1000,100,100);
|
||||
time_random_matrix(1,1,1000,100,100);
|
||||
}
|
||||
|
@ -1,70 +0,0 @@
|
||||
#include "opencl.h"
|
||||
|
||||
void pm(int M, int N, float *A);
|
||||
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
float *random_matrix(int rows, int cols);
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n);
|
||||
|
||||
#ifdef GPU
|
||||
void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY);
|
||||
void axpy_ongpu_offset(int N, float ALPHA, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY);
|
||||
void copy_ongpu(int N, cl_mem X, int INCX, cl_mem Y, int INCY);
|
||||
void copy_ongpu_offset(int N, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY);
|
||||
void scal_ongpu(int N, float ALPHA, cl_mem X, int INCX);
|
||||
void im2col_ongpu(cl_mem data_im, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, cl_mem data_col);
|
||||
|
||||
void col2im_gpu(float *data_col, int offset,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_im);
|
||||
void col2im_ongpu(cl_mem data_col, int batch,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, cl_mem data_im);
|
||||
|
||||
void im2col_gpu(float *data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float *data_col);
|
||||
|
||||
void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int a_off, int lda,
|
||||
cl_mem B_gpu, int b_off, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int c_off, int ldc);
|
||||
|
||||
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int lda,
|
||||
cl_mem B_gpu, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int ldc);
|
||||
#endif
|
||||
|
||||
void im2col_cpu(float* data_im,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_col);
|
||||
|
||||
void col2im_cpu(float* data_col,
|
||||
int channels, int height, int width,
|
||||
int ksize, int stride, int pad, float* data_im);
|
||||
|
||||
void test_blas();
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float *A, int lda,
|
||||
float *B, int ldb,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
|
||||
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void scal_cpu(int N, float ALPHA, float *X, int INCX);
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void test_gpu_blas();
|
@ -53,9 +53,10 @@ network make_network(int n, int batch)
|
||||
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
||||
net.outputs = 0;
|
||||
net.output = 0;
|
||||
net.seen = 0;
|
||||
#ifdef GPU
|
||||
net.input_cl = calloc(1, sizeof(cl_mem));
|
||||
net.truth_cl = calloc(1, sizeof(cl_mem));
|
||||
net.input_gpu = calloc(1, sizeof(float *));
|
||||
net.truth_gpu = calloc(1, sizeof(float *));
|
||||
#endif
|
||||
return net;
|
||||
}
|
||||
@ -107,9 +108,12 @@ void forward_network(network net, float *input, float *truth, int train)
|
||||
}
|
||||
else if(net.types[i] == FREEWEIGHT){
|
||||
if(!train) continue;
|
||||
freeweight_layer layer = *(freeweight_layer *)net.layers[i];
|
||||
forward_freeweight_layer(layer, input);
|
||||
//freeweight_layer layer = *(freeweight_layer *)net.layers[i];
|
||||
//forward_freeweight_layer(layer, input);
|
||||
}
|
||||
//char buff[256];
|
||||
//sprintf(buff, "layer %d", i);
|
||||
//cuda_compare(get_network_output_gpu_layer(net, i), input, get_network_output_size_layer(net, i)*net.batch, buff);
|
||||
}
|
||||
}
|
||||
|
||||
@ -582,7 +586,7 @@ void top_predictions(network net, int k, int *index)
|
||||
float *network_predict(network net, float *input)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) return network_predict_gpu(net, input);
|
||||
if(gpu_index >= 0) return network_predict_gpu(net, input);
|
||||
#endif
|
||||
|
||||
forward_network(net, input, 0, 0);
|
||||
|
@ -2,7 +2,6 @@
|
||||
#ifndef NETWORK_H
|
||||
#define NETWORK_H
|
||||
|
||||
#include "opencl.h"
|
||||
#include "image.h"
|
||||
#include "data.h"
|
||||
|
||||
@ -21,6 +20,7 @@ typedef enum {
|
||||
typedef struct {
|
||||
int n;
|
||||
int batch;
|
||||
int seen;
|
||||
float learning_rate;
|
||||
float momentum;
|
||||
float decay;
|
||||
@ -30,14 +30,16 @@ typedef struct {
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem *input_cl;
|
||||
cl_mem *truth_cl;
|
||||
float **input_gpu;
|
||||
float **truth_gpu;
|
||||
#endif
|
||||
} network;
|
||||
|
||||
#ifdef GPU
|
||||
float train_network_datum_gpu(network net, float *x, float *y);
|
||||
float *network_predict_gpu(network net, float *input);
|
||||
float * get_network_output_gpu_layer(network net, int i);
|
||||
float * get_network_delta_gpu_layer(network net, int i);
|
||||
#endif
|
||||
|
||||
void compare_networks(network n1, network n2, data d);
|
||||
|
@ -1,3 +1,4 @@
|
||||
extern "C" {
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
@ -15,12 +16,12 @@
|
||||
#include "freeweight_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem get_network_output_cl_layer(network net, int i);
|
||||
cl_mem get_network_delta_cl_layer(network net, int i);
|
||||
extern "C" float * get_network_output_gpu_layer(network net, int i);
|
||||
extern "C" float * get_network_delta_gpu_layer(network net, int i);
|
||||
|
||||
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
void forward_network_gpu(network net, float * input, float * truth, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
@ -28,7 +29,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
@ -37,47 +38,46 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
forward_maxpool_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
if(!train) continue;
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
forward_dropout_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
forward_crop_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
input = layer.output_gpu;
|
||||
}
|
||||
check_error(cl);
|
||||
//printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
|
||||
}
|
||||
}
|
||||
|
||||
void backward_network_gpu(network net, cl_mem input)
|
||||
void backward_network_gpu(network net, float * input)
|
||||
{
|
||||
int i;
|
||||
cl_mem prev_input;
|
||||
cl_mem prev_delta;
|
||||
float * prev_input;
|
||||
float * prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
//clock_t time = clock();
|
||||
if(i == 0){
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
}else{
|
||||
prev_input = get_network_output_cl_layer(net, i-1);
|
||||
prev_delta = get_network_delta_cl_layer(net, i-1);
|
||||
prev_input = get_network_output_gpu_layer(net, i-1);
|
||||
prev_delta = get_network_delta_gpu_layer(net, i-1);
|
||||
}
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
@ -103,7 +103,6 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
backward_softmax_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
check_error(cl);
|
||||
//printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
|
||||
}
|
||||
}
|
||||
@ -123,54 +122,54 @@ void update_network_gpu(network net)
|
||||
}
|
||||
}
|
||||
|
||||
cl_mem get_network_output_cl_layer(network net, int i)
|
||||
float * get_network_output_gpu_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
return layer.output_gpu;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
float * get_network_delta_gpu_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
return layer.delta_gpu;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
if(i == 0) return 0;
|
||||
return get_network_delta_cl_layer(net, i-1);
|
||||
return get_network_delta_gpu_layer(net, i-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -179,15 +178,15 @@ float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
if(!*net.input_cl){
|
||||
*net.input_cl = cl_make_array(x, x_size);
|
||||
*net.truth_cl = cl_make_array(y, y_size);
|
||||
if(!*net.input_gpu){
|
||||
*net.input_gpu = cuda_make_array(x, x_size);
|
||||
*net.truth_gpu = cuda_make_array(y, y_size);
|
||||
}else{
|
||||
cl_write_array(*net.input_cl, x, x_size);
|
||||
cl_write_array(*net.truth_cl, y, y_size);
|
||||
cuda_push_array(*net.input_gpu, x, x_size);
|
||||
cuda_push_array(*net.truth_gpu, y, y_size);
|
||||
}
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
|
||||
backward_network_gpu(net, *net.input_gpu);
|
||||
update_network_gpu(net);
|
||||
float error = get_network_cost(net);
|
||||
return error;
|
||||
@ -201,7 +200,7 @@ float *get_network_output_layer_gpu(network net, int i)
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
cl_read_array(layer.output_cl, layer.output, layer.outputs*layer.batch);
|
||||
cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
@ -227,11 +226,10 @@ float *network_predict_gpu(network net, float *input)
|
||||
{
|
||||
|
||||
int size = get_network_input_size(net) * net.batch;
|
||||
cl_mem input_cl = cl_make_array(input, size);
|
||||
forward_network_gpu(net, input_cl, 0, 0);
|
||||
float * input_gpu = cuda_make_array(input, size);
|
||||
forward_network_gpu(net, input_gpu, 0, 0);
|
||||
float *out = get_network_output_gpu(net);
|
||||
clReleaseMemObject(input_cl);
|
||||
cuda_free(input_gpu);
|
||||
return out;
|
||||
}
|
||||
|
||||
#endif
|
222
src/opencl.c
222
src/opencl.c
@ -1,222 +0,0 @@
|
||||
int gpu_index;
|
||||
#ifdef GPU
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#ifdef CLBLAS
|
||||
#include <clBLAS.h>
|
||||
#endif
|
||||
|
||||
#include "opencl.h"
|
||||
#include "utils.h"
|
||||
#include "activations.h"
|
||||
|
||||
cl_info cl = {0};
|
||||
|
||||
void check_error(cl_info info)
|
||||
{
|
||||
clFinish(cl.queue);
|
||||
if (info.error != CL_SUCCESS) {
|
||||
printf("\n Error number %d", info.error);
|
||||
abort();
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
#define MAX_DEVICES 10
|
||||
|
||||
cl_info cl_init(int index)
|
||||
{
|
||||
cl_info info;
|
||||
info.initialized = 0;
|
||||
if(index < 0) error("Won't initialize negative gpu id\n");
|
||||
cl_uint num_platforms, num_devices;
|
||||
// Fetch the Platform and Device IDs; we only want one.
|
||||
cl_device_id devices[MAX_DEVICES];
|
||||
info.error=clGetPlatformIDs(1, &info.platform, &num_platforms);
|
||||
check_error(info);
|
||||
|
||||
info.error=clGetDeviceIDs(info.platform, CL_DEVICE_TYPE_ALL, MAX_DEVICES, devices, &num_devices);
|
||||
check_error(info);
|
||||
|
||||
index = index%num_devices;
|
||||
info.device = devices[index];
|
||||
check_error(info);
|
||||
|
||||
cl_context_properties properties[]={
|
||||
CL_CONTEXT_PLATFORM, (cl_context_properties)info.platform, 0};
|
||||
|
||||
// Note that nVidia's OpenCL requires the platform property
|
||||
info.context=clCreateContext(properties, 1, &info.device, 0, 0, &info.error);
|
||||
check_error(info);
|
||||
|
||||
info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
|
||||
check_error(info);
|
||||
#ifdef CLBLAS
|
||||
info.error = clblasSetup();
|
||||
#endif
|
||||
check_error(info);
|
||||
info.initialized = 1;
|
||||
|
||||
#ifdef VERBOSE
|
||||
printf("=== %d OpenCL platform(s) found: ===\n", num_platforms);
|
||||
char buffer[10240];
|
||||
clGetPlatformInfo(info.platform, CL_PLATFORM_PROFILE, 10240, buffer, NULL);
|
||||
printf(" PROFILE = %s\n", buffer);
|
||||
clGetPlatformInfo(info.platform, CL_PLATFORM_VERSION, 10240, buffer, NULL);
|
||||
printf(" VERSION = %s\n", buffer);
|
||||
clGetPlatformInfo(info.platform, CL_PLATFORM_NAME, 10240, buffer, NULL);
|
||||
printf(" NAME = %s\n", buffer);
|
||||
clGetPlatformInfo(info.platform, CL_PLATFORM_VENDOR, 10240, buffer, NULL);
|
||||
printf(" VENDOR = %s\n", buffer);
|
||||
clGetPlatformInfo(info.platform, CL_PLATFORM_EXTENSIONS, 10240, buffer, NULL);
|
||||
printf(" EXTENSIONS = %s\n", buffer);
|
||||
check_error(info);
|
||||
|
||||
if(num_devices > MAX_DEVICES) num_devices = MAX_DEVICES;
|
||||
printf("=== %d OpenCL device(s) found on platform:\n", num_devices);
|
||||
int i;
|
||||
for (i=0; i<num_devices; i++){
|
||||
char buffer[10240];
|
||||
cl_uint buf_uint;
|
||||
cl_ulong buf_ulong;
|
||||
printf(" -- %d --\n", i);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(buffer), buffer, NULL);
|
||||
printf(" DEVICE_NAME = %s\n", buffer);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_VENDOR, sizeof(buffer), buffer, NULL);
|
||||
printf(" DEVICE_VENDOR = %s\n", buffer);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_VERSION, sizeof(buffer), buffer, NULL);
|
||||
printf(" DEVICE_VERSION = %s\n", buffer);
|
||||
clGetDeviceInfo(devices[i], CL_DRIVER_VERSION, sizeof(buffer), buffer, NULL);
|
||||
printf(" DRIVER_VERSION = %s\n", buffer);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(buf_uint), &buf_uint, NULL);
|
||||
printf(" DEVICE_MAX_COMPUTE_UNITS = %u\n", (unsigned int)buf_uint);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(buf_uint), &buf_uint, NULL);
|
||||
printf(" DEVICE_MAX_CLOCK_FREQUENCY = %u\n", (unsigned int)buf_uint);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_GLOBAL_MEM_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_MAX_MEM_ALLOC_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(buf_ulong), &buf_ulong, NULL);
|
||||
printf(" DEVICE_MAX_WORK_GROUP_SIZE = %llu\n", (unsigned long long)buf_ulong);
|
||||
cl_uint items;
|
||||
clGetDeviceInfo( devices[i], CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(cl_uint),
|
||||
&items, NULL);
|
||||
printf(" DEVICE_MAX_WORK_ITEM_DIMENSIONS = %u\n", (unsigned int)items);
|
||||
size_t workitem_size[10];
|
||||
clGetDeviceInfo(devices[i], CL_DEVICE_MAX_WORK_ITEM_SIZES, 10*sizeof(workitem_size), workitem_size, NULL);
|
||||
printf(" DEVICE_MAX_WORK_ITEM_SIZES = %u / %u / %u \n", (unsigned int)workitem_size[0], (unsigned int)workitem_size[1], (unsigned int)workitem_size[2]);
|
||||
printf("%d devices, %d index\n", num_devices, index);
|
||||
|
||||
}
|
||||
#endif
|
||||
return info;
|
||||
}
|
||||
|
||||
cl_program cl_fprog(char *filename, char *options, cl_info info)
|
||||
{
|
||||
size_t srcsize;
|
||||
char src[64*1024];
|
||||
memset(src, 0, 64*1024);
|
||||
FILE *fil=fopen(filename,"r");
|
||||
if(fil == 0) file_error(filename);
|
||||
srcsize=fread(src, sizeof src, 1, fil);
|
||||
fclose(fil);
|
||||
const char *srcptr[]={src};
|
||||
// Submit the source code of the example kernel to OpenCL
|
||||
cl_program prog=clCreateProgramWithSource(info.context,1, srcptr, &srcsize, &info.error);
|
||||
check_error(info);
|
||||
char build_c[1024*64];
|
||||
// and compile it (after this we could extract the compiled version)
|
||||
info.error=clBuildProgram(prog, 0, 0, options, 0, 0);
|
||||
//if ( info.error != CL_SUCCESS ) {
|
||||
fprintf(stderr, "Error Building Program: %d\n", info.error);
|
||||
clGetProgramBuildInfo( prog, info.device, CL_PROGRAM_BUILD_LOG, 1024*64, build_c, 0);
|
||||
fprintf(stderr, "Build Log for %s program:\n%s\n", filename, build_c);
|
||||
//}
|
||||
check_error(info);
|
||||
return prog;
|
||||
}
|
||||
|
||||
void cl_setup()
|
||||
{
|
||||
if(!cl.initialized){
|
||||
fprintf(stderr, "Initializing OpenCL\n");
|
||||
cl = cl_init(gpu_index);
|
||||
}
|
||||
}
|
||||
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options)
|
||||
{
|
||||
cl_program prog = cl_fprog(filename, options, cl);
|
||||
cl_kernel kernel=clCreateKernel(prog, kernelname, &cl.error);
|
||||
check_error(cl);
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void cl_read_array(cl_mem mem, float *x, int n)
|
||||
{
|
||||
if(gpu_index < 0) return;
|
||||
cl.error = clEnqueueReadBuffer(cl.queue, mem, CL_TRUE, 0, sizeof(float)*n,x,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
float cl_checksum(cl_mem mem, int n)
|
||||
{
|
||||
|
||||
float *x = calloc(n, sizeof(float));
|
||||
cl_read_array(mem, x, n);
|
||||
float sum = sum_array(x, n);
|
||||
free(x);
|
||||
return sum;
|
||||
}
|
||||
|
||||
void cl_write_array(cl_mem mem, float *x, int n)
|
||||
{
|
||||
if(gpu_index < 0) return;
|
||||
cl.error = clEnqueueWriteBuffer(cl.queue, mem, CL_TRUE, 0,sizeof(float)*n,x,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n)
|
||||
{
|
||||
cl.error = clEnqueueCopyBuffer(cl.queue, src, dst, 0, 0, sizeof(float)*n,0,0,0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
cl_mem cl_sub_array(cl_mem src, int offset, int size)
|
||||
{
|
||||
cl_buffer_region r;
|
||||
r.origin = offset*sizeof(float);
|
||||
r.size = size*sizeof(float);
|
||||
cl_mem sub = clCreateSubBuffer(src, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, &r, &cl.error);
|
||||
check_error(cl);
|
||||
return sub;
|
||||
}
|
||||
|
||||
|
||||
cl_mem cl_make_array(float *x, int n)
|
||||
{
|
||||
if(gpu_index < 0) return 0;
|
||||
cl_mem mem = clCreateBuffer(cl.context,
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
sizeof(float)*n, x, &cl.error);
|
||||
check_error(cl);
|
||||
//activate_array_ongpu(mem, n, LINEAR);
|
||||
return mem;
|
||||
}
|
||||
|
||||
cl_mem cl_make_int_array(int *x, int n)
|
||||
{
|
||||
if(gpu_index < 0) return 0;
|
||||
cl_mem mem = clCreateBuffer(cl.context,
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
sizeof(int)*n, x, &cl.error);
|
||||
check_error(cl);
|
||||
return mem;
|
||||
}
|
||||
|
||||
#endif
|
34
src/opencl.h
34
src/opencl.h
@ -1,34 +0,0 @@
|
||||
#ifndef OPENCL_H
|
||||
#define OPENCL_H
|
||||
extern int gpu_index;
|
||||
#ifdef GPU
|
||||
#ifdef __APPLE__
|
||||
#include <OpenCL/opencl.h>
|
||||
#else
|
||||
#include <CL/cl.h>
|
||||
#endif
|
||||
|
||||
|
||||
typedef struct {
|
||||
int initialized;
|
||||
cl_int error;
|
||||
cl_platform_id platform;
|
||||
cl_device_id device;
|
||||
cl_context context;
|
||||
cl_command_queue queue;
|
||||
}cl_info;
|
||||
|
||||
extern cl_info cl;
|
||||
|
||||
void cl_setup();
|
||||
void check_error(cl_info info);
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
|
||||
void cl_read_array(cl_mem mem, float *x, int n);
|
||||
void cl_write_array(cl_mem mem, float *x, int n);
|
||||
cl_mem cl_make_array(float *x, int n);
|
||||
cl_mem cl_make_int_array(int *x, int n);
|
||||
void cl_copy_array(cl_mem src, cl_mem dst, int n);
|
||||
cl_mem cl_sub_array(cl_mem src, int offset, int size);
|
||||
float cl_checksum(cl_mem mem, int n);
|
||||
#endif
|
||||
#endif
|
34
src/parser.c
34
src/parser.c
@ -16,7 +16,6 @@
|
||||
#include "list.h"
|
||||
#include "option_list.h"
|
||||
#include "utils.h"
|
||||
#include "opencl.h"
|
||||
|
||||
typedef struct{
|
||||
char *type;
|
||||
@ -87,6 +86,7 @@ convolutional_layer *parse_convolutional(list *options, network *net, int count)
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
learning_rate = option_find_float_quiet(options, "learning_rate", net->learning_rate);
|
||||
momentum = option_find_float_quiet(options, "momentum", net->momentum);
|
||||
@ -149,6 +149,7 @@ softmax_layer *parse_softmax(list *options, network *net, int count)
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
@ -163,6 +164,7 @@ cost_layer *parse_cost(list *options, network *net, int count)
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
@ -191,6 +193,7 @@ crop_layer *parse_crop(list *options, network *net, int count)
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
@ -213,6 +216,7 @@ maxpool_layer *parse_maxpool(list *options, network *net, int count)
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
@ -225,6 +229,7 @@ maxpool_layer *parse_maxpool(list *options, network *net, int count)
|
||||
return layer;
|
||||
}
|
||||
|
||||
/*
|
||||
freeweight_layer *parse_freeweight(list *options, network *net, int count)
|
||||
{
|
||||
int input;
|
||||
@ -238,6 +243,7 @@ freeweight_layer *parse_freeweight(list *options, network *net, int count)
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
*/
|
||||
|
||||
dropout_layer *parse_dropout(list *options, network *net, int count)
|
||||
{
|
||||
@ -252,6 +258,7 @@ dropout_layer *parse_dropout(list *options, network *net, int count)
|
||||
net->learning_rate = learning_rate;
|
||||
net->momentum = momentum;
|
||||
net->decay = decay;
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
input = get_network_output_size_layer(*net, count-1);
|
||||
}
|
||||
@ -272,6 +279,7 @@ normalization_layer *parse_normalization(list *options, network *net, int count)
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net->batch = option_find_int(options, "batch",1);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
}else{
|
||||
image m = get_network_image_layer(*net, count-1);
|
||||
h = m.h;
|
||||
@ -327,9 +335,10 @@ network parse_network_cfg(char *filename)
|
||||
net.types[count] = DROPOUT;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_freeweight(s)){
|
||||
freeweight_layer *layer = parse_freeweight(options, &net, count);
|
||||
net.types[count] = FREEWEIGHT;
|
||||
net.layers[count] = layer;
|
||||
//freeweight_layer *layer = parse_freeweight(options, &net, count);
|
||||
//net.types[count] = FREEWEIGHT;
|
||||
//net.layers[count] = layer;
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
@ -442,7 +451,7 @@ list *read_cfg(char *filename)
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
||||
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
@ -453,8 +462,9 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int
|
||||
"channels=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n",
|
||||
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay);
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch,l->h, l->w, l->c, l->learning_rate, l->momentum, l->decay, net.seen);
|
||||
} else {
|
||||
if(l->learning_rate != net.learning_rate)
|
||||
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
|
||||
@ -508,8 +518,9 @@ void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
"input=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n",
|
||||
l->batch, l->inputs, l->learning_rate, l->momentum, l->decay);
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch, l->inputs, l->learning_rate, l->momentum, l->decay, net.seen);
|
||||
} else {
|
||||
if(l->learning_rate != net.learning_rate)
|
||||
fprintf(fp, "learning_rate=%g\n", l->learning_rate);
|
||||
@ -540,8 +551,9 @@ void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
|
||||
"channels=%d\n"
|
||||
"learning_rate=%g\n"
|
||||
"momentum=%g\n"
|
||||
"decay=%g\n",
|
||||
l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay);
|
||||
"decay=%g\n"
|
||||
"seen=%d\n",
|
||||
l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay, net.seen);
|
||||
}
|
||||
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
|
||||
}
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "softmax_layer.h"
|
||||
#include "mini_blas.h"
|
||||
#include "blas.h"
|
||||
#include "cuda.h"
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
@ -15,8 +16,8 @@ softmax_layer *make_softmax_layer(int batch, int inputs)
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_cl = cl_make_array(layer->output, inputs*batch);
|
||||
layer->delta_cl = cl_make_array(layer->delta, inputs*batch);
|
||||
layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
}
|
||||
@ -49,71 +50,3 @@ void backward_softmax_layer(const softmax_layer layer, float *delta)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_softmax_layer_output(const softmax_layer layer)
|
||||
{
|
||||
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
|
||||
}
|
||||
|
||||
cl_kernel get_softmax_forward_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/softmax_layer.cl", "forward", 0);
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
|
||||
{
|
||||
cl_kernel kernel = get_softmax_forward_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.batch};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
/*
|
||||
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
|
||||
int z;
|
||||
for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
|
||||
{
|
||||
copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* This is if you want softmax w/o log-loss classification. You probably don't.
|
||||
int i,j,b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
for(j = 0; j < layer.inputs; ++j){
|
||||
int d = (i==j);
|
||||
layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] =
|
||||
layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
int M = layer.inputs;
|
||||
int N = 1;
|
||||
int K = layer.inputs;
|
||||
float *A = layer.jacobian + b*layer.inputs*layer.inputs;
|
||||
float *B = layer.delta + b*layer.inputs;
|
||||
float *C = delta + b*layer.inputs;
|
||||
gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
|
||||
}
|
||||
*/
|
||||
|
@ -1,21 +0,0 @@
|
||||
|
||||
__kernel void forward(int n, __global float *input, __global float *output)
|
||||
{
|
||||
int b = get_global_id(0);
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -INFINITY;
|
||||
for(i = 0; i < n; ++i){
|
||||
int val = input[i+b*n];
|
||||
largest = (val>largest) ? val : largest;
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i+b*n]-largest);
|
||||
}
|
||||
sum = (sum != 0) ? largest+log(sum) : largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i+b*n] = exp(input[i+b*n]-sum);
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,6 @@
|
||||
#ifndef SOFTMAX_LAYER_H
|
||||
#define SOFTMAX_LAYER_H
|
||||
|
||||
#include "opencl.h"
|
||||
|
||||
typedef struct {
|
||||
int inputs;
|
||||
int batch;
|
||||
@ -10,8 +8,8 @@ typedef struct {
|
||||
float *output;
|
||||
float *jacobian;
|
||||
#ifdef GPU
|
||||
cl_mem delta_cl;
|
||||
cl_mem output_cl;
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
} softmax_layer;
|
||||
|
||||
@ -21,8 +19,8 @@ void backward_softmax_layer(const softmax_layer layer, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void pull_softmax_layer_output(const softmax_layer layer);
|
||||
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
|
||||
void forward_softmax_layer_gpu(const softmax_layer layer, float *input);
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, float *delta);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
72
src/softmax_layer_kernels.cu
Normal file
72
src/softmax_layer_kernels.cu
Normal file
@ -0,0 +1,72 @@
|
||||
extern "C" {
|
||||
#include "softmax_layer.h"
|
||||
#include "cuda.h"
|
||||
#include "blas.h"
|
||||
}
|
||||
|
||||
#define BLOCK 256
|
||||
|
||||
__global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float *output)
|
||||
{
|
||||
int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(b >= batch) return;
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -INFINITY;
|
||||
for(i = 0; i < n; ++i){
|
||||
int val = input[i+b*n];
|
||||
largest = (val>largest) ? val : largest;
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i+b*n]-largest);
|
||||
}
|
||||
sum = (sum != 0) ? largest+log(sum) : largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i+b*n] = exp(input[i+b*n]-sum);
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void pull_softmax_layer_output(const softmax_layer layer)
|
||||
{
|
||||
cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch);
|
||||
}
|
||||
|
||||
extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, float *input)
|
||||
{
|
||||
forward_softmax_layer_kernel<<<cuda_gridsize(layer.batch), BLOCK>>>(layer.inputs, layer.batch, input, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
|
||||
/*
|
||||
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
|
||||
int z;
|
||||
for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
|
||||
*/
|
||||
}
|
||||
|
||||
extern "C" void backward_softmax_layer_gpu(const softmax_layer layer, float *delta)
|
||||
{
|
||||
copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, delta, 1);
|
||||
}
|
||||
|
||||
/* This is if you want softmax w/o log-loss classification. You probably don't.
|
||||
int i,j,b;
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
for(j = 0; j < layer.inputs; ++j){
|
||||
int d = (i==j);
|
||||
layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] =
|
||||
layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
int M = layer.inputs;
|
||||
int N = 1;
|
||||
int K = layer.inputs;
|
||||
float *A = layer.jacobian + b*layer.inputs*layer.inputs;
|
||||
float *B = layer.delta + b*layer.inputs;
|
||||
float *C = delta + b*layer.inputs;
|
||||
gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
|
||||
}
|
||||
*/
|
16
src/utils.c
16
src/utils.c
@ -7,6 +7,19 @@
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
void pm(int M, int N, float *A)
|
||||
{
|
||||
int i,j;
|
||||
for(i =0 ; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
printf("%10.6f, ", A[i*N+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
char *find_replace(char *str, char *orig, char *rep)
|
||||
{
|
||||
static char buffer[4096];
|
||||
@ -44,10 +57,9 @@ void top_k(float *a, int n, int k, int *index)
|
||||
}
|
||||
}
|
||||
|
||||
void error(char *s)
|
||||
void error(const char *s)
|
||||
{
|
||||
perror(s);
|
||||
//fprintf(stderr, "Error: %s\n", s);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
|
@ -5,7 +5,7 @@
|
||||
#include "list.h"
|
||||
|
||||
char *find_replace(char *str, char *orig, char *rep);
|
||||
void error(char *s);
|
||||
void error(const char *s);
|
||||
void malloc_error();
|
||||
void file_error(char *s);
|
||||
void strip(char *s);
|
||||
|
Loading…
x
Reference in New Issue
Block a user