2015-07-10 01:22:14 +03:00
|
|
|
#include "normalization_layer.h"
|
|
|
|
#include "blas.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
layer make_normalization_layer(int batch, int w, int h, int c, int size, float alpha, float beta, float kappa)
|
|
|
|
{
|
|
|
|
fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", w,h,c,size);
|
|
|
|
layer layer = {0};
|
|
|
|
layer.type = NORMALIZATION;
|
|
|
|
layer.batch = batch;
|
|
|
|
layer.h = layer.out_h = h;
|
|
|
|
layer.w = layer.out_w = w;
|
|
|
|
layer.c = layer.out_c = c;
|
|
|
|
layer.kappa = kappa;
|
|
|
|
layer.size = size;
|
|
|
|
layer.alpha = alpha;
|
|
|
|
layer.beta = beta;
|
|
|
|
layer.output = calloc(h * w * c * batch, sizeof(float));
|
|
|
|
layer.delta = calloc(h * w * c * batch, sizeof(float));
|
|
|
|
layer.squared = calloc(h * w * c * batch, sizeof(float));
|
|
|
|
layer.norms = calloc(h * w * c * batch, sizeof(float));
|
|
|
|
layer.inputs = w*h*c;
|
|
|
|
layer.outputs = layer.inputs;
|
|
|
|
#ifdef GPU
|
|
|
|
layer.output_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer.delta_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer.squared_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer.norms_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
#endif
|
|
|
|
return layer;
|
|
|
|
}
|
|
|
|
|
|
|
|
void resize_normalization_layer(layer *layer, int w, int h)
|
|
|
|
{
|
|
|
|
int c = layer->c;
|
|
|
|
int batch = layer->batch;
|
|
|
|
layer->h = h;
|
|
|
|
layer->w = w;
|
|
|
|
layer->out_h = h;
|
|
|
|
layer->out_w = w;
|
|
|
|
layer->inputs = w*h*c;
|
|
|
|
layer->outputs = layer->inputs;
|
2015-07-14 01:04:21 +03:00
|
|
|
layer->output = realloc(layer->output, h * w * c * batch * sizeof(float));
|
|
|
|
layer->delta = realloc(layer->delta, h * w * c * batch * sizeof(float));
|
|
|
|
layer->squared = realloc(layer->squared, h * w * c * batch * sizeof(float));
|
|
|
|
layer->norms = realloc(layer->norms, h * w * c * batch * sizeof(float));
|
2015-07-10 01:22:14 +03:00
|
|
|
#ifdef GPU
|
|
|
|
cuda_free(layer->output_gpu);
|
|
|
|
cuda_free(layer->delta_gpu);
|
|
|
|
cuda_free(layer->squared_gpu);
|
|
|
|
cuda_free(layer->norms_gpu);
|
|
|
|
layer->output_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer->delta_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer->squared_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
layer->norms_gpu = cuda_make_array(0, h * w * c * batch);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward_normalization_layer(const layer layer, network_state state)
|
|
|
|
{
|
|
|
|
int k,b;
|
|
|
|
int w = layer.w;
|
|
|
|
int h = layer.h;
|
|
|
|
int c = layer.c;
|
|
|
|
scal_cpu(w*h*c*layer.batch, 0, layer.squared, 1);
|
|
|
|
|
|
|
|
for(b = 0; b < layer.batch; ++b){
|
|
|
|
float *squared = layer.squared + w*h*c*b;
|
|
|
|
float *norms = layer.norms + w*h*c*b;
|
|
|
|
float *input = state.input + w*h*c*b;
|
|
|
|
pow_cpu(w*h*c, 2, input, 1, squared, 1);
|
|
|
|
|
|
|
|
const_cpu(w*h, layer.kappa, norms, 1);
|
|
|
|
for(k = 0; k < layer.size/2; ++k){
|
|
|
|
axpy_cpu(w*h, layer.alpha, squared + w*h*k, 1, norms, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for(k = 1; k < layer.c; ++k){
|
|
|
|
copy_cpu(w*h, norms + w*h*(k-1), 1, norms + w*h*k, 1);
|
|
|
|
int prev = k - ((layer.size-1)/2) - 1;
|
|
|
|
int next = k + (layer.size/2);
|
|
|
|
if(prev >= 0) axpy_cpu(w*h, -layer.alpha, squared + w*h*prev, 1, norms + w*h*k, 1);
|
|
|
|
if(next < layer.c) axpy_cpu(w*h, layer.alpha, squared + w*h*next, 1, norms + w*h*k, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pow_cpu(w*h*c*layer.batch, -layer.beta, layer.norms, 1, layer.output, 1);
|
|
|
|
mul_cpu(w*h*c*layer.batch, state.input, 1, layer.output, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void backward_normalization_layer(const layer layer, network_state state)
|
|
|
|
{
|
|
|
|
// TODO This is approximate ;-)
|
2015-07-22 02:09:33 +03:00
|
|
|
// Also this should add in to delta instead of overwritting.
|
2015-07-10 01:22:14 +03:00
|
|
|
|
|
|
|
int w = layer.w;
|
|
|
|
int h = layer.h;
|
|
|
|
int c = layer.c;
|
|
|
|
pow_cpu(w*h*c*layer.batch, -layer.beta, layer.norms, 1, state.delta, 1);
|
|
|
|
mul_cpu(w*h*c*layer.batch, layer.delta, 1, state.delta, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GPU
|
|
|
|
void forward_normalization_layer_gpu(const layer layer, network_state state)
|
|
|
|
{
|
|
|
|
int k,b;
|
|
|
|
int w = layer.w;
|
|
|
|
int h = layer.h;
|
|
|
|
int c = layer.c;
|
|
|
|
scal_ongpu(w*h*c*layer.batch, 0, layer.squared_gpu, 1);
|
|
|
|
|
|
|
|
for(b = 0; b < layer.batch; ++b){
|
|
|
|
float *squared = layer.squared_gpu + w*h*c*b;
|
|
|
|
float *norms = layer.norms_gpu + w*h*c*b;
|
|
|
|
float *input = state.input + w*h*c*b;
|
|
|
|
pow_ongpu(w*h*c, 2, input, 1, squared, 1);
|
|
|
|
|
|
|
|
const_ongpu(w*h, layer.kappa, norms, 1);
|
|
|
|
for(k = 0; k < layer.size/2; ++k){
|
|
|
|
axpy_ongpu(w*h, layer.alpha, squared + w*h*k, 1, norms, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for(k = 1; k < layer.c; ++k){
|
|
|
|
copy_ongpu(w*h, norms + w*h*(k-1), 1, norms + w*h*k, 1);
|
|
|
|
int prev = k - ((layer.size-1)/2) - 1;
|
|
|
|
int next = k + (layer.size/2);
|
|
|
|
if(prev >= 0) axpy_ongpu(w*h, -layer.alpha, squared + w*h*prev, 1, norms + w*h*k, 1);
|
|
|
|
if(next < layer.c) axpy_ongpu(w*h, layer.alpha, squared + w*h*next, 1, norms + w*h*k, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pow_ongpu(w*h*c*layer.batch, -layer.beta, layer.norms_gpu, 1, layer.output_gpu, 1);
|
|
|
|
mul_ongpu(w*h*c*layer.batch, state.input, 1, layer.output_gpu, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void backward_normalization_layer_gpu(const layer layer, network_state state)
|
|
|
|
{
|
|
|
|
// TODO This is approximate ;-)
|
|
|
|
|
|
|
|
int w = layer.w;
|
|
|
|
int h = layer.h;
|
|
|
|
int c = layer.c;
|
|
|
|
pow_ongpu(w*h*c*layer.batch, -layer.beta, layer.norms_gpu, 1, state.delta, 1);
|
|
|
|
mul_ongpu(w*h*c*layer.batch, layer.delta_gpu, 1, state.delta, 1);
|
|
|
|
}
|
|
|
|
#endif
|