darknet/src/network_gpu.c

313 lines
9.5 KiB
C
Raw Normal View History

2014-11-06 01:49:58 +03:00
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#ifdef GPU
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
//printf("start\n");
int i;
2014-11-19 00:51:04 +03:00
// printf("Truth: %f\n", cl_checksum(truth, 1000*net.batch));
2014-11-06 01:49:58 +03:00
for(i = 0; i < net.n; ++i){
2014-11-19 00:51:04 +03:00
//printf("Truth %i: %f\n", i, cl_checksum(truth, 1000*net.batch));
2014-11-06 01:49:58 +03:00
//clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
2014-11-19 00:51:04 +03:00
else if(net.types[i] == DROPOUT){
if(!train) continue;
dropout_layer layer = *(dropout_layer *)net.layers[i];
forward_dropout_layer_gpu(layer, input);
}
2014-11-06 01:49:58 +03:00
//printf("%d %f\n", i, sec(clock()-time));
/*
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
}
*/
}
}
void backward_network_gpu(network net, cl_mem input)
{
int i;
cl_mem prev_input;
cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){
//clock_t time = clock();
if(i == 0){
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_cl_layer(net, i-1);
prev_delta = get_network_delta_cl_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
2014-12-04 10:20:29 +03:00
backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
2014-11-06 01:49:58 +03:00
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
//printf("back: %d %f\n", i, sec(clock()-time));
}
}
void update_network_gpu(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer);
}
}
}
cl_mem get_network_output_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output_cl;
2014-11-19 00:51:04 +03:00
} else if(net.types[i] == DROPOUT){
return get_network_output_cl_layer(net, i-1);
2014-11-06 01:49:58 +03:00
}
return 0;
}
cl_mem get_network_delta_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_cl;
2014-11-19 00:51:04 +03:00
} else if(net.types[i] == DROPOUT){
return get_network_delta_cl_layer(net, i-1);
2014-11-06 01:49:58 +03:00
}
return 0;
}
float train_network_datum_gpu(network net, float *x, float *y)
{
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
//clock_t time = clock();
if(!*net.input_cl){
*net.input_cl = cl_make_array(x, x_size);
*net.truth_cl = cl_make_array(y, y_size);
}else{
cl_write_array(*net.input_cl, x, x_size);
cl_write_array(*net.truth_cl, y, y_size);
}
//printf("trans %f\n", sec(clock()-time));
//time = clock();
2014-11-19 00:51:04 +03:00
2014-11-06 01:49:58 +03:00
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
2014-11-19 00:51:04 +03:00
2014-11-06 01:49:58 +03:00
//printf("forw %f\n", sec(clock()-time));
//time = clock();
backward_network_gpu(net, *net.input_cl);
//printf("back %f\n", sec(clock()-time));
//time = clock();
2014-11-19 00:51:04 +03:00
2014-11-06 01:49:58 +03:00
update_network_gpu(net);
float error = get_network_cost(net);
2014-11-19 00:51:04 +03:00
2014-11-06 01:49:58 +03:00
//printf("updt %f\n", sec(clock()-time));
//time = clock();
return error;
}
float train_network_sgd_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_random_batch(d, batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float train_network_data_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float *get_network_output_layer_gpu(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
pull_softmax_layer_output(layer);
return layer.output;
}
return 0;
}
float *get_network_output_gpu(network net)
{
int i;
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
return get_network_output_layer_gpu(net, i);
}
float *network_predict_gpu(network net, float *input)
{
int size = get_network_input_size(net) * net.batch;
cl_mem input_cl = cl_make_array(input, size);
forward_network_gpu(net, input_cl, 0, 0);
float *out = get_network_output_gpu(net);
clReleaseMemObject(input_cl);
return out;
}
matrix network_predict_data_gpu(network net, data test)
{
int i,j,b;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict_gpu(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
}
}
free(X);
return pred;
}
float network_accuracy_gpu(network net, data d)
{
matrix guess = network_predict_data_gpu(net, d);
float acc = matrix_accuracy(d.y, guess);
free_matrix(guess);
return acc;
}
#endif