Can validate on imagenet now

This commit is contained in:
Joseph Redmon 2014-11-05 14:49:58 -08:00
parent 2b2441313b
commit b13ad6d5fd
15 changed files with 451 additions and 291 deletions

View File

@ -1,10 +1,17 @@
CC=gcc
GPU=1
CLBLAS=0
CC=gcc
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
ifeq ($(GPU), 1)
COMMON+=-DGPU
else
endif
ifeq ($(CLBLAS), 1)
COMMON+=-DCLBLAS
LDFLAGS=-lclBLAS
endif
UNAME = $(shell uname)
OPTS=-Ofast -flto
ifeq ($(UNAME), Darwin)
@ -15,7 +22,7 @@ endif
else
OPTS+= -march=native
ifeq ($(GPU), 1)
LDFLAGS= -lOpenCL
LDFLAGS+= -lOpenCL
endif
endif
CFLAGS= $(COMMON) $(OPTS)
@ -25,7 +32,7 @@ VPATH=./src/
EXEC=cnn
OBJDIR=./obj/
OBJ=network.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
OBJ=network.o network_gpu.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
OBJS = $(addprefix $(OBJDIR), $(OBJ))
all: $(EXEC)

View File

@ -278,9 +278,9 @@ void test_data()
free_data(train);
}
void train_assira()
void train_asirra()
{
network net = parse_network_cfg("cfg/assira.cfg");
network net = parse_network_cfg("cfg/imagenet.cfg");
int imgs = 1000/net.batch+1;
//imgs = 1;
srand(2222222);
@ -288,18 +288,18 @@ void train_assira()
char *labels[] = {"cat","dog"};
clock_t time;
while(1){
i += 1000;
i += 1;
time=clock();
data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network_sgd(net, train, imgs);
printf("%d: %f, Time: %lf seconds\n", i, loss, sec(clock()-time));
float loss = train_network_data_gpu(net, train, imgs);
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
free_data(train);
if(i%10000==0){
if(i%10==0){
char buff[256];
sprintf(buff, "cfg/assira_backup_%d.cfg", i);
sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
save_network(net, buff);
}
//lr *= .99;
@ -308,10 +308,11 @@ void train_assira()
void train_imagenet()
{
network net = parse_network_cfg("cfg/imagenet_small_830.cfg");
float avg_loss = 1;
network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_nin_2680.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1000/net.batch+1;
srand(6472345);
srand(time(0));
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
@ -322,22 +323,51 @@ void train_imagenet()
i += 1;
time=clock();
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
normalize_data_rows(train);
//translate_data_rows(train, -144);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
#ifdef GPU
float loss = train_network_data_gpu(net, train, imgs);
printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
#endif
free_data(train);
if(i%10==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_small_%d.cfg", i);
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_nin_%d.cfg", i);
save_network(net, buff);
}
}
}
void validate_imagenet(char *filename)
{
int i;
network net = parse_network_cfg(filename);
srand(time(0));
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
char *path = "/home/pjreddie/data/imagenet/cls.val.list";
clock_t time;
float avg_acc = 0;
int splits = 50;
for(i = 0; i < splits; ++i){
time=clock();
data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256);
normalize_data_rows(val);
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
#ifdef GPU
float acc = network_accuracy_gpu(net, val);
avg_acc += acc;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
#endif
free_data(val);
}
}
void train_imagenet_small()
{
network net = parse_network_cfg("cfg/imagenet_small.cfg");
@ -369,7 +399,7 @@ void train_imagenet_small()
void test_imagenet()
{
network net = parse_network_cfg("cfg/imagenet_test.cfg");
network net = parse_network_cfg("cfg/imagenet_test.cfg");
//imgs=1;
srand(2222222);
int i = 0;
@ -380,7 +410,7 @@ void test_imagenet()
while(1){
gets(filename);
image im = load_image_color(filename, 256, 256);
normalize_image(im);
z_normalize_image(im);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
@ -395,9 +425,9 @@ void test_imagenet()
}
}
void test_visualize()
void test_visualize(char *filename)
{
network net = parse_network_cfg("cfg/imagenet.cfg");
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
}
@ -1016,26 +1046,17 @@ void test_gpu_net()
int main(int argc, char *argv[])
{
int i;
int ksize = 3;
int stride = 4;
int width_col = 20;
for(i = 0; i < 10; ++i){
int start = (i<ksize)?0:(i-ksize)/stride + 1;
int start2 = (i-ksize+stride)/stride;
int end = i/stride + 1;
end = (width_col < end) ? width_col : end;
printf("%d: %d vs %d, %d\n", i, start,start2, end);
}
if(argc != 2){
if(argc < 2){
fprintf(stderr, "usage: %s <function>\n", argv[0]);
return 0;
}
if(0==strcmp(argv[1], "train")) train_imagenet();
else if(0==strcmp(argv[1], "asirra")) train_asirra();
else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
else if(0==strcmp(argv[1], "test")) test_imagenet();
else if(0==strcmp(argv[1], "visualize")) test_visualize();
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
#ifdef GPU
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
#endif

View File

@ -28,7 +28,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
layer->weights = calloc(inputs*outputs, sizeof(float));
float scale = 1./inputs;
scale = .05;
scale = .01;
for(i = 0; i < inputs*outputs; ++i)
layer->weights[i] = scale*2*(rand_uniform()-.5);

View File

@ -65,7 +65,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
layer->bias_updates = calloc(n, sizeof(float));
layer->bias_momentum = calloc(n, sizeof(float));
float scale = 1./(size*size*c);
scale = .05;
scale = .01;
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
for(i = 0; i < n; ++i){
//layer->biases[i] = rand_normal()*scale + scale;

View File

@ -35,6 +35,8 @@ void backward_cost_layer(const cost_layer layer, float *input, float *delta)
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
{
if (!truth) return;
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);

View File

@ -83,6 +83,7 @@ void free_data(data d)
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
{
clock_t time = clock();
list *plist = get_paths(filename);
char **paths = (char **)list_to_array(plist);
int start = part*plist->size/total;

View File

@ -104,7 +104,10 @@ void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
#include "opencl.h"
#include <math.h>
//#include <clBLAS.h>
#ifdef CLBLAS
#include <clBLAS.h>
#endif
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
@ -165,13 +168,6 @@ void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
float BETA,
cl_mem C_gpu, int ldc)
{
/*
cl_setup();
cl_command_queue queue = cl.queue;
cl_event event;
cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
*/
gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
}
@ -181,6 +177,13 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
float BETA,
cl_mem C_gpu, int c_off, int ldc)
{
#ifdef CLBLAS
cl_setup();
cl_command_queue queue = cl.queue;
cl_event event;
cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event);
check_error(cl);
#else
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
cl_setup();
cl_kernel gemm_kernel = get_gemm_kernel();
@ -213,6 +216,7 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
check_error(cl);
#endif
}
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
@ -284,7 +288,7 @@ void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
void time_ongpu(int TA, int TB, int m, int k, int n)
{
int iter = 128;
int iter = 10;
float *a = random_matrix(m,k);
float *b = random_matrix(k,n);
@ -302,7 +306,7 @@ void time_ongpu(int TA, int TB, int m, int k, int n)
for(i = 0; i<iter; ++i){
gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
}
double flop = m*n*(2.*k+3.)*iter;
double flop = m*n*k*iter;
double gflop = flop/pow(10., 9);
end = clock();
double seconds = sec(end-start);
@ -352,32 +356,43 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
void test_gpu_blas()
{
/*
test_gpu_accuracy(0,0,10,576,75);
test_gpu_accuracy(0,0,10,576,75);
test_gpu_accuracy(0,0,17,10,10);
test_gpu_accuracy(1,0,17,10,10);
test_gpu_accuracy(0,1,17,10,10);
test_gpu_accuracy(1,1,17,10,10);
test_gpu_accuracy(0,0,17,10,10);
test_gpu_accuracy(1,0,17,10,10);
test_gpu_accuracy(0,1,17,10,10);
test_gpu_accuracy(1,1,17,10,10);
test_gpu_accuracy(0,0,1000,10,100);
test_gpu_accuracy(1,0,1000,10,100);
test_gpu_accuracy(0,1,1000,10,100);
test_gpu_accuracy(1,1,1000,10,100);
*/
time_ongpu(0,0,128,1200,4096);
time_ongpu(0,0,128,1200,4096);
time_ongpu(0,0,128,1200,4096);
time_ongpu(0,1,128,1200,4096);
time_ongpu(1,0,1200,4096,128);
time_ongpu(1,0,4096,1200,128);
time_ongpu(1,0,1200,128,4096);
test_gpu_accuracy(0,0,1000,10,100);
test_gpu_accuracy(1,0,1000,10,100);
test_gpu_accuracy(0,1,1000,10,100);
test_gpu_accuracy(1,1,1000,10,100);
*/
test_gpu_accuracy(0,0,131,4093,1199);
test_gpu_accuracy(0,1,131,4093,1199);
test_gpu_accuracy(1,0,131,4093,1199);
test_gpu_accuracy(1,1,131,4093,1199);
/*
time_ongpu(0,0,1024,1024,1024);
time_ongpu(0,1,1024,1024,1024);
time_ongpu(1,0,1024,1024,1024);
time_ongpu(1,1,1024,1024,1024);
time_ongpu(0,0,1024,1024,1024);
time_ongpu(0,1,1024,1024,1024);
time_ongpu(1,0,1024,1024,1024);
time_ongpu(1,1,1024,1024,1024);
time_ongpu(0,0,128,4096,1200);
time_ongpu(0,1,128,4096,1200);
time_ongpu(1,0,128,4096,1200);
time_ongpu(1,1,128,4096,1200);
time_ongpu(0,0,128,4096,1200);
time_ongpu(0,1,128,4096,1200);
time_ongpu(1,0,128,4096,1200);
time_ongpu(1,1,128,4096,1200);
*/
/*
time_gpu_random_matrix(0,0,1000,1000,100);

View File

@ -423,7 +423,7 @@ image load_image_color(char *filename, int h, int w)
exit(0);
}
if(h && w && (src->height != h || src->width != w)){
printf("Resized!\n");
//printf("Resized!\n");
IplImage *resized = resizeImage(src, h, w, 1);
cvReleaseImage(&src);
src = resized;

View File

@ -31,150 +31,6 @@ network make_network(int n, int batch)
return net;
}
#ifdef GPU
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
//printf("start\n");
int i;
for(i = 0; i < net.n; ++i){
//clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
//printf("%d %f\n", i, sec(clock()-time));
/*
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
}
*/
}
}
void backward_network_gpu(network net, cl_mem input)
{
int i;
cl_mem prev_input;
cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){
//clock_t time = clock();
if(i == 0){
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_cl_layer(net, i-1);
prev_delta = get_network_delta_cl_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
//printf("back: %d %f\n", i, sec(clock()-time));
}
}
void update_network_gpu(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer);
}
}
}
cl_mem get_network_output_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output_cl;
}
return 0;
}
cl_mem get_network_delta_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_cl;
}
return 0;
}
#endif
void forward_network(network net, float *input, float *truth, int train)
{
@ -383,70 +239,6 @@ void backward_network(network net, float *input)
}
#ifdef GPU
float train_network_datum_gpu(network net, float *x, float *y)
{
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
clock_t time = clock();
if(!*net.input_cl){
*net.input_cl = cl_make_array(x, x_size);
*net.truth_cl = cl_make_array(y, y_size);
}else{
cl_write_array(*net.input_cl, x, x_size);
cl_write_array(*net.truth_cl, y, y_size);
}
//printf("trans %f\n", sec(clock()-time));
time = clock();
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
//printf("forw %f\n", sec(clock()-time));
time = clock();
backward_network_gpu(net, *net.input_cl);
//printf("back %f\n", sec(clock()-time));
time = clock();
float error = get_network_cost(net);
update_network_gpu(net);
//printf("updt %f\n", sec(clock()-time));
time = clock();
return error;
}
float train_network_sgd_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_random_batch(d, batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float train_network_data_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
#endif
float train_network_datum(network net, float *x, float *y)
@ -477,6 +269,7 @@ float train_network_sgd(network net, data d, int n)
free(y);
return (float)sum/(n*batch);
}
float train_network_batch(network net, data d, int n)
{
int i,j;
@ -496,6 +289,23 @@ float train_network_batch(network net, data d, int n)
return (float)sum/(n*batch);
}
float train_network_data_cpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
float err = train_network_datum(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
void train_network(network net, data d)
{
@ -687,6 +497,7 @@ void top_predictions(network net, int n, int *index)
}
}
float *network_predict(network net, float *input)
{
forward_network(net, input, 0, 0);
@ -724,7 +535,7 @@ matrix network_predict_data(network net, data test)
int i,j,b;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.rows, sizeof(float));
float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;

View File

@ -43,6 +43,8 @@ cl_mem get_network_output_cl_layer(network net, int i);
cl_mem get_network_delta_cl_layer(network net, int i);
float train_network_sgd_gpu(network net, data d, int n);
float train_network_data_gpu(network net, data d, int n);
float *network_predict_gpu(network net, float *input);
float network_accuracy_gpu(network net, data d);
#endif
network make_network(int n, int batch);
@ -51,6 +53,7 @@ void backward_network(network net, float *input);
void update_network(network net);
float train_network_sgd(network net, data d, int n);
float train_network_batch(network net, data d, int n);
float train_network_data_cpu(network net, data d, int n);
void train_network(network net, data d);
matrix network_predict_data(network net, data test);
float *network_predict(network net, float *input);

297
src/network_gpu.c Normal file
View File

@ -0,0 +1,297 @@
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#ifdef GPU
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
//printf("start\n");
int i;
for(i = 0; i < net.n; ++i){
//clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
forward_cost_layer_gpu(layer, input, truth);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
//printf("%d %f\n", i, sec(clock()-time));
/*
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
input = layer.output;
}
*/
}
}
void backward_network_gpu(network net, cl_mem input)
{
int i;
cl_mem prev_input;
cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){
//clock_t time = clock();
if(i == 0){
prev_input = input;
prev_delta = 0;
}else{
prev_input = get_network_output_cl_layer(net, i-1);
prev_delta = get_network_delta_cl_layer(net, i-1);
}
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
backward_convolutional_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
//printf("back: %d %f\n", i, sec(clock()-time));
}
}
void update_network_gpu(network net)
{
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
update_convolutional_layer_gpu(layer);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
update_connected_layer_gpu(layer);
}
}
}
cl_mem get_network_output_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output_cl;
}
return 0;
}
cl_mem get_network_delta_cl_layer(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_cl;
}
return 0;
}
float train_network_datum_gpu(network net, float *x, float *y)
{
int x_size = get_network_input_size(net)*net.batch;
int y_size = get_network_output_size(net)*net.batch;
//clock_t time = clock();
if(!*net.input_cl){
*net.input_cl = cl_make_array(x, x_size);
*net.truth_cl = cl_make_array(y, y_size);
}else{
cl_write_array(*net.input_cl, x, x_size);
cl_write_array(*net.truth_cl, y, y_size);
}
//printf("trans %f\n", sec(clock()-time));
//time = clock();
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
//printf("forw %f\n", sec(clock()-time));
//time = clock();
backward_network_gpu(net, *net.input_cl);
//printf("back %f\n", sec(clock()-time));
//time = clock();
update_network_gpu(net);
float error = get_network_cost(net);
//printf("updt %f\n", sec(clock()-time));
//time = clock();
return error;
}
float train_network_sgd_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_random_batch(d, batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float train_network_data_gpu(network net, data d, int n)
{
int batch = net.batch;
float *X = calloc(batch*d.X.cols, sizeof(float));
float *y = calloc(batch*d.y.cols, sizeof(float));
int i;
float sum = 0;
for(i = 0; i < n; ++i){
get_next_batch(d, batch, i*batch, X, y);
float err = train_network_datum_gpu(net, X, y);
sum += err;
}
free(X);
free(y);
return (float)sum/(n*batch);
}
float *get_network_output_layer_gpu(network net, int i)
{
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
pull_softmax_layer_output(layer);
return layer.output;
}
return 0;
}
float *get_network_output_gpu(network net)
{
int i;
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
return get_network_output_layer_gpu(net, i);
}
float *network_predict_gpu(network net, float *input)
{
int size = get_network_input_size(net) * net.batch;
cl_mem input_cl = cl_make_array(input, size);
forward_network_gpu(net, input_cl, 0, 0);
float *out = get_network_output_gpu(net);
clReleaseMemObject(input_cl);
return out;
}
matrix network_predict_data_gpu(network net, data test)
{
int i,j,b;
int k = get_network_output_size(net);
matrix pred = make_matrix(test.X.rows, k);
float *X = calloc(net.batch*test.X.cols, sizeof(float));
for(i = 0; i < test.X.rows; i += net.batch){
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
}
float *out = network_predict_gpu(net, X);
for(b = 0; b < net.batch; ++b){
if(i+b == test.X.rows) break;
for(j = 0; j < k; ++j){
pred.vals[i+b][j] = out[j+b*k];
}
}
}
free(X);
return pred;
}
float network_accuracy_gpu(network net, data d)
{
matrix guess = network_predict_data_gpu(net, d);
float acc = matrix_accuracy(d.y, guess);
free_matrix(guess);
return acc;
}
#endif

View File

@ -4,7 +4,10 @@
#include <string.h>
#include <time.h>
#include <unistd.h>
//#include <clBLAS.h>
#ifdef CLBLAS
#include <clBLAS.h>
#endif
#include "opencl.h"
#include "utils.h"
@ -81,7 +84,7 @@ cl_info cl_init()
}
int index = getpid()%num_devices;
index = 1;
index = 0;
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
info.device = devices[index];
fprintf(stderr, "Found %d device(s)\n", num_devices);
@ -95,24 +98,14 @@ cl_info cl_init()
check_error(info);
info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
check_error(info);
for(i = 0; i < NUM_QUEUES; ++i){
info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
check_error(info);
}
//info.error = clblasSetup();
#ifdef CLBLAS
info.error = clblasSetup();
#endif
check_error(info);
info.initialized = 1;
return info;
}
void wait_for_queues()
{
int i;
for(i = 0; i < NUM_QUEUES; ++i){
clFinish(cl.queues[i]);
}
}
cl_program cl_fprog(char *filename, char *options, cl_info info)
{
size_t srcsize;

View File

@ -7,7 +7,6 @@
#include <CL/cl.h>
#endif
#define NUM_QUEUES 8
typedef struct {
int initialized;
@ -16,13 +15,11 @@ typedef struct {
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_command_queue queues[NUM_QUEUES];
}cl_info;
extern cl_info cl;
void cl_setup();
void wait_for_queues();
void check_error(cl_info info);
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
void cl_read_array(cl_mem mem, float *x, int n);

View File

@ -50,6 +50,12 @@ void backward_softmax_layer(const softmax_layer layer, float *delta)
}
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer)
{
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
}
cl_kernel get_softmax_forward_kernel()
{
static int init = 0;
@ -77,6 +83,12 @@ void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
check_error(cl);
/*
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
int z;
for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
*/
}
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)

View File

@ -20,6 +20,7 @@ void forward_softmax_layer(const softmax_layer layer, float *input);
void backward_softmax_layer(const softmax_layer layer, float *delta);
#ifdef GPU
void pull_softmax_layer_output(const softmax_layer layer);
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
#endif