mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Can validate on imagenet now
This commit is contained in:
parent
2b2441313b
commit
b13ad6d5fd
15
Makefile
15
Makefile
@ -1,10 +1,17 @@
|
||||
CC=gcc
|
||||
GPU=1
|
||||
CLBLAS=0
|
||||
|
||||
CC=gcc
|
||||
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||
ifeq ($(GPU), 1)
|
||||
COMMON+=-DGPU
|
||||
else
|
||||
endif
|
||||
|
||||
ifeq ($(CLBLAS), 1)
|
||||
COMMON+=-DCLBLAS
|
||||
LDFLAGS=-lclBLAS
|
||||
endif
|
||||
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-Ofast -flto
|
||||
ifeq ($(UNAME), Darwin)
|
||||
@ -15,7 +22,7 @@ endif
|
||||
else
|
||||
OPTS+= -march=native
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS= -lOpenCL
|
||||
LDFLAGS+= -lOpenCL
|
||||
endif
|
||||
endif
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
@ -25,7 +32,7 @@ VPATH=./src/
|
||||
EXEC=cnn
|
||||
OBJDIR=./obj/
|
||||
|
||||
OBJ=network.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
|
||||
OBJ=network.o network_gpu.o image.o cnn.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o gemm.o normalization_layer.o opencl.o im2col.o col2im.o axpy.o dropout_layer.o crop_layer.o freeweight_layer.o cost_layer.o
|
||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||
|
||||
all: $(EXEC)
|
||||
|
79
src/cnn.c
79
src/cnn.c
@ -278,9 +278,9 @@ void test_data()
|
||||
free_data(train);
|
||||
}
|
||||
|
||||
void train_assira()
|
||||
void train_asirra()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/assira.cfg");
|
||||
network net = parse_network_cfg("cfg/imagenet.cfg");
|
||||
int imgs = 1000/net.batch+1;
|
||||
//imgs = 1;
|
||||
srand(2222222);
|
||||
@ -288,18 +288,18 @@ void train_assira()
|
||||
char *labels[] = {"cat","dog"};
|
||||
clock_t time;
|
||||
while(1){
|
||||
i += 1000;
|
||||
i += 1;
|
||||
time=clock();
|
||||
data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network_sgd(net, train, imgs);
|
||||
printf("%d: %f, Time: %lf seconds\n", i, loss, sec(clock()-time));
|
||||
float loss = train_network_data_gpu(net, train, imgs);
|
||||
printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
|
||||
free_data(train);
|
||||
if(i%10000==0){
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "cfg/assira_backup_%d.cfg", i);
|
||||
sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
//lr *= .99;
|
||||
@ -308,10 +308,11 @@ void train_assira()
|
||||
|
||||
void train_imagenet()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/imagenet_small_830.cfg");
|
||||
float avg_loss = 1;
|
||||
network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_nin_2680.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
srand(6472345);
|
||||
srand(time(0));
|
||||
int i = 0;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
@ -322,22 +323,51 @@ void train_imagenet()
|
||||
i += 1;
|
||||
time=clock();
|
||||
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
|
||||
normalize_data_rows(train);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
float loss = train_network_data_gpu(net, train, imgs);
|
||||
printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
|
||||
#endif
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_small_%d.cfg", i);
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_nin_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void validate_imagenet(char *filename)
|
||||
{
|
||||
int i;
|
||||
network net = parse_network_cfg(filename);
|
||||
srand(time(0));
|
||||
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
|
||||
char *path = "/home/pjreddie/data/imagenet/cls.val.list";
|
||||
|
||||
clock_t time;
|
||||
float avg_acc = 0;
|
||||
int splits = 50;
|
||||
for(i = 0; i < splits; ++i){
|
||||
time=clock();
|
||||
data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256);
|
||||
normalize_data_rows(val);
|
||||
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
float acc = network_accuracy_gpu(net, val);
|
||||
avg_acc += acc;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
|
||||
#endif
|
||||
free_data(val);
|
||||
}
|
||||
}
|
||||
|
||||
void train_imagenet_small()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/imagenet_small.cfg");
|
||||
@ -369,7 +399,7 @@ void train_imagenet_small()
|
||||
|
||||
void test_imagenet()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/imagenet_test.cfg");
|
||||
network net = parse_network_cfg("cfg/imagenet_test.cfg");
|
||||
//imgs=1;
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
@ -380,7 +410,7 @@ void test_imagenet()
|
||||
while(1){
|
||||
gets(filename);
|
||||
image im = load_image_color(filename, 256, 256);
|
||||
normalize_image(im);
|
||||
z_normalize_image(im);
|
||||
printf("%d %d %d\n", im.h, im.w, im.c);
|
||||
float *X = im.data;
|
||||
time=clock();
|
||||
@ -395,9 +425,9 @@ void test_imagenet()
|
||||
}
|
||||
}
|
||||
|
||||
void test_visualize()
|
||||
void test_visualize(char *filename)
|
||||
{
|
||||
network net = parse_network_cfg("cfg/imagenet.cfg");
|
||||
network net = parse_network_cfg(filename);
|
||||
visualize_network(net);
|
||||
cvWaitKey(0);
|
||||
}
|
||||
@ -1016,26 +1046,17 @@ void test_gpu_net()
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int i;
|
||||
int ksize = 3;
|
||||
int stride = 4;
|
||||
int width_col = 20;
|
||||
for(i = 0; i < 10; ++i){
|
||||
int start = (i<ksize)?0:(i-ksize)/stride + 1;
|
||||
int start2 = (i-ksize+stride)/stride;
|
||||
int end = i/stride + 1;
|
||||
end = (width_col < end) ? width_col : end;
|
||||
printf("%d: %d vs %d, %d\n", i, start,start2, end);
|
||||
}
|
||||
if(argc != 2){
|
||||
if(argc < 2){
|
||||
fprintf(stderr, "usage: %s <function>\n", argv[0]);
|
||||
return 0;
|
||||
}
|
||||
if(0==strcmp(argv[1], "train")) train_imagenet();
|
||||
else if(0==strcmp(argv[1], "asirra")) train_asirra();
|
||||
else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
|
||||
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
|
||||
else if(0==strcmp(argv[1], "test")) test_imagenet();
|
||||
else if(0==strcmp(argv[1], "visualize")) test_visualize();
|
||||
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
|
||||
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
|
||||
#ifdef GPU
|
||||
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
|
||||
#endif
|
||||
|
@ -28,7 +28,7 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
//layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
float scale = 1./inputs;
|
||||
scale = .05;
|
||||
scale = .01;
|
||||
for(i = 0; i < inputs*outputs; ++i)
|
||||
layer->weights[i] = scale*2*(rand_uniform()-.5);
|
||||
|
||||
|
@ -65,7 +65,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
layer->bias_momentum = calloc(n, sizeof(float));
|
||||
float scale = 1./(size*size*c);
|
||||
scale = .05;
|
||||
scale = .01;
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
|
||||
for(i = 0; i < n; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
|
@ -35,6 +35,8 @@ void backward_cost_layer(const cost_layer layer, float *input, float *delta)
|
||||
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
|
||||
{
|
||||
if (!truth) return;
|
||||
|
||||
|
||||
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
|
||||
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
|
||||
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
|
||||
|
@ -83,6 +83,7 @@ void free_data(data d)
|
||||
|
||||
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
|
||||
{
|
||||
clock_t time = clock();
|
||||
list *plist = get_paths(filename);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int start = part*plist->size/total;
|
||||
|
71
src/gemm.c
71
src/gemm.c
@ -104,7 +104,10 @@ void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
#include "opencl.h"
|
||||
#include <math.h>
|
||||
//#include <clBLAS.h>
|
||||
|
||||
#ifdef CLBLAS
|
||||
#include <clBLAS.h>
|
||||
#endif
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
@ -165,13 +168,6 @@ void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int ldc)
|
||||
{
|
||||
/*
|
||||
cl_setup();
|
||||
cl_command_queue queue = cl.queue;
|
||||
cl_event event;
|
||||
cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
|
||||
*/
|
||||
|
||||
gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
|
||||
}
|
||||
|
||||
@ -181,6 +177,13 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int c_off, int ldc)
|
||||
{
|
||||
#ifdef CLBLAS
|
||||
cl_setup();
|
||||
cl_command_queue queue = cl.queue;
|
||||
cl_event event;
|
||||
cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event);
|
||||
check_error(cl);
|
||||
#else
|
||||
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
|
||||
cl_setup();
|
||||
cl_kernel gemm_kernel = get_gemm_kernel();
|
||||
@ -213,6 +216,7 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
@ -284,7 +288,7 @@ void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
|
||||
void time_ongpu(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
int iter = 128;
|
||||
int iter = 10;
|
||||
float *a = random_matrix(m,k);
|
||||
float *b = random_matrix(k,n);
|
||||
|
||||
@ -302,7 +306,7 @@ void time_ongpu(int TA, int TB, int m, int k, int n)
|
||||
for(i = 0; i<iter; ++i){
|
||||
gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
||||
}
|
||||
double flop = m*n*(2.*k+3.)*iter;
|
||||
double flop = m*n*k*iter;
|
||||
double gflop = flop/pow(10., 9);
|
||||
end = clock();
|
||||
double seconds = sec(end-start);
|
||||
@ -352,32 +356,43 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
void test_gpu_blas()
|
||||
{
|
||||
/*
|
||||
test_gpu_accuracy(0,0,10,576,75);
|
||||
test_gpu_accuracy(0,0,10,576,75);
|
||||
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
test_gpu_accuracy(1,0,17,10,10);
|
||||
test_gpu_accuracy(0,1,17,10,10);
|
||||
test_gpu_accuracy(1,1,17,10,10);
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
test_gpu_accuracy(1,0,17,10,10);
|
||||
test_gpu_accuracy(0,1,17,10,10);
|
||||
test_gpu_accuracy(1,1,17,10,10);
|
||||
|
||||
test_gpu_accuracy(0,0,1000,10,100);
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
*/
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
|
||||
time_ongpu(0,1,128,1200,4096);
|
||||
time_ongpu(1,0,1200,4096,128);
|
||||
time_ongpu(1,0,4096,1200,128);
|
||||
time_ongpu(1,0,1200,128,4096);
|
||||
|
||||
test_gpu_accuracy(0,0,1000,10,100);
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
*/
|
||||
test_gpu_accuracy(0,0,131,4093,1199);
|
||||
test_gpu_accuracy(0,1,131,4093,1199);
|
||||
test_gpu_accuracy(1,0,131,4093,1199);
|
||||
test_gpu_accuracy(1,1,131,4093,1199);
|
||||
/*
|
||||
|
||||
time_ongpu(0,0,1024,1024,1024);
|
||||
time_ongpu(0,1,1024,1024,1024);
|
||||
time_ongpu(1,0,1024,1024,1024);
|
||||
time_ongpu(1,1,1024,1024,1024);
|
||||
time_ongpu(0,0,1024,1024,1024);
|
||||
time_ongpu(0,1,1024,1024,1024);
|
||||
time_ongpu(1,0,1024,1024,1024);
|
||||
time_ongpu(1,1,1024,1024,1024);
|
||||
|
||||
time_ongpu(0,0,128,4096,1200);
|
||||
time_ongpu(0,1,128,4096,1200);
|
||||
time_ongpu(1,0,128,4096,1200);
|
||||
time_ongpu(1,1,128,4096,1200);
|
||||
time_ongpu(0,0,128,4096,1200);
|
||||
time_ongpu(0,1,128,4096,1200);
|
||||
time_ongpu(1,0,128,4096,1200);
|
||||
time_ongpu(1,1,128,4096,1200);
|
||||
*/
|
||||
|
||||
/*
|
||||
time_gpu_random_matrix(0,0,1000,1000,100);
|
||||
|
@ -423,7 +423,7 @@ image load_image_color(char *filename, int h, int w)
|
||||
exit(0);
|
||||
}
|
||||
if(h && w && (src->height != h || src->width != w)){
|
||||
printf("Resized!\n");
|
||||
//printf("Resized!\n");
|
||||
IplImage *resized = resizeImage(src, h, w, 1);
|
||||
cvReleaseImage(&src);
|
||||
src = resized;
|
||||
|
229
src/network.c
229
src/network.c
@ -31,150 +31,6 @@ network make_network(int n, int batch)
|
||||
return net;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
{
|
||||
//printf("start\n");
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
//clock_t time = clock();
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer_gpu(layer, input, truth);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
forward_maxpool_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
//printf("%d %f\n", i, sec(clock()-time));
|
||||
/*
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
forward_crop_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
void backward_network_gpu(network net, cl_mem input)
|
||||
{
|
||||
int i;
|
||||
cl_mem prev_input;
|
||||
cl_mem prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
//clock_t time = clock();
|
||||
if(i == 0){
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
}else{
|
||||
prev_input = get_network_output_cl_layer(net, i-1);
|
||||
prev_delta = get_network_delta_cl_layer(net, i-1);
|
||||
}
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
backward_convolutional_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
backward_maxpool_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
backward_softmax_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
//printf("back: %d %f\n", i, sec(clock()-time));
|
||||
}
|
||||
}
|
||||
|
||||
void update_network_gpu(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer_gpu(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cl_mem get_network_output_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
void forward_network(network net, float *input, float *truth, int train)
|
||||
{
|
||||
@ -383,70 +239,6 @@ void backward_network(network net, float *input)
|
||||
}
|
||||
|
||||
|
||||
#ifdef GPU
|
||||
float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
clock_t time = clock();
|
||||
if(!*net.input_cl){
|
||||
*net.input_cl = cl_make_array(x, x_size);
|
||||
*net.truth_cl = cl_make_array(y, y_size);
|
||||
}else{
|
||||
cl_write_array(*net.input_cl, x, x_size);
|
||||
cl_write_array(*net.truth_cl, y, y_size);
|
||||
}
|
||||
//printf("trans %f\n", sec(clock()-time));
|
||||
time = clock();
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
//printf("forw %f\n", sec(clock()-time));
|
||||
time = clock();
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
//printf("back %f\n", sec(clock()-time));
|
||||
time = clock();
|
||||
float error = get_network_cost(net);
|
||||
update_network_gpu(net);
|
||||
//printf("updt %f\n", sec(clock()-time));
|
||||
time = clock();
|
||||
return error;
|
||||
}
|
||||
|
||||
float train_network_sgd_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_random_batch(d, batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
float train_network_data_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_next_batch(d, batch, i*batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
float train_network_datum(network net, float *x, float *y)
|
||||
@ -477,6 +269,7 @@ float train_network_sgd(network net, data d, int n)
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
float train_network_batch(network net, data d, int n)
|
||||
{
|
||||
int i,j;
|
||||
@ -496,6 +289,23 @@ float train_network_batch(network net, data d, int n)
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
float train_network_data_cpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_next_batch(d, batch, i*batch, X, y);
|
||||
float err = train_network_datum(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
void train_network(network net, data d)
|
||||
{
|
||||
@ -687,6 +497,7 @@ void top_predictions(network net, int n, int *index)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float *network_predict(network net, float *input)
|
||||
{
|
||||
forward_network(net, input, 0, 0);
|
||||
@ -724,7 +535,7 @@ matrix network_predict_data(network net, data test)
|
||||
int i,j,b;
|
||||
int k = get_network_output_size(net);
|
||||
matrix pred = make_matrix(test.X.rows, k);
|
||||
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
||||
float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
||||
for(i = 0; i < test.X.rows; i += net.batch){
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
|
@ -43,6 +43,8 @@ cl_mem get_network_output_cl_layer(network net, int i);
|
||||
cl_mem get_network_delta_cl_layer(network net, int i);
|
||||
float train_network_sgd_gpu(network net, data d, int n);
|
||||
float train_network_data_gpu(network net, data d, int n);
|
||||
float *network_predict_gpu(network net, float *input);
|
||||
float network_accuracy_gpu(network net, data d);
|
||||
#endif
|
||||
|
||||
network make_network(int n, int batch);
|
||||
@ -51,6 +53,7 @@ void backward_network(network net, float *input);
|
||||
void update_network(network net);
|
||||
float train_network_sgd(network net, data d, int n);
|
||||
float train_network_batch(network net, data d, int n);
|
||||
float train_network_data_cpu(network net, data d, int n);
|
||||
void train_network(network net, data d);
|
||||
matrix network_predict_data(network net, data test);
|
||||
float *network_predict(network net, float *input);
|
||||
|
297
src/network_gpu.c
Normal file
297
src/network_gpu.c
Normal file
@ -0,0 +1,297 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
#include "network.h"
|
||||
#include "image.h"
|
||||
#include "data.h"
|
||||
#include "utils.h"
|
||||
|
||||
#include "crop_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "freeweight_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
{
|
||||
//printf("start\n");
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
//clock_t time = clock();
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer_gpu(layer, input, truth);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
forward_maxpool_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
//printf("%d %f\n", i, sec(clock()-time));
|
||||
/*
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
forward_crop_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
void backward_network_gpu(network net, cl_mem input)
|
||||
{
|
||||
int i;
|
||||
cl_mem prev_input;
|
||||
cl_mem prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
//clock_t time = clock();
|
||||
if(i == 0){
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
}else{
|
||||
prev_input = get_network_output_cl_layer(net, i-1);
|
||||
prev_delta = get_network_delta_cl_layer(net, i-1);
|
||||
}
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
backward_convolutional_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
backward_maxpool_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
backward_softmax_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
//printf("back: %d %f\n", i, sec(clock()-time));
|
||||
}
|
||||
}
|
||||
|
||||
void update_network_gpu(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer_gpu(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cl_mem get_network_output_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
//clock_t time = clock();
|
||||
if(!*net.input_cl){
|
||||
*net.input_cl = cl_make_array(x, x_size);
|
||||
*net.truth_cl = cl_make_array(y, y_size);
|
||||
}else{
|
||||
cl_write_array(*net.input_cl, x, x_size);
|
||||
cl_write_array(*net.truth_cl, y, y_size);
|
||||
}
|
||||
//printf("trans %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
//printf("forw %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
//printf("back %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
update_network_gpu(net);
|
||||
float error = get_network_cost(net);
|
||||
//printf("updt %f\n", sec(clock()-time));
|
||||
//time = clock();
|
||||
return error;
|
||||
}
|
||||
|
||||
float train_network_sgd_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_random_batch(d, batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
float train_network_data_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_next_batch(d, batch, i*batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
|
||||
float *get_network_output_layer_gpu(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
pull_softmax_layer_output(layer);
|
||||
return layer.output;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float *get_network_output_gpu(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
return get_network_output_layer_gpu(net, i);
|
||||
}
|
||||
|
||||
float *network_predict_gpu(network net, float *input)
|
||||
{
|
||||
|
||||
int size = get_network_input_size(net) * net.batch;
|
||||
cl_mem input_cl = cl_make_array(input, size);
|
||||
forward_network_gpu(net, input_cl, 0, 0);
|
||||
float *out = get_network_output_gpu(net);
|
||||
clReleaseMemObject(input_cl);
|
||||
return out;
|
||||
}
|
||||
|
||||
matrix network_predict_data_gpu(network net, data test)
|
||||
{
|
||||
int i,j,b;
|
||||
int k = get_network_output_size(net);
|
||||
matrix pred = make_matrix(test.X.rows, k);
|
||||
float *X = calloc(net.batch*test.X.cols, sizeof(float));
|
||||
for(i = 0; i < test.X.rows; i += net.batch){
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
||||
}
|
||||
float *out = network_predict_gpu(net, X);
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
for(j = 0; j < k; ++j){
|
||||
pred.vals[i+b][j] = out[j+b*k];
|
||||
}
|
||||
}
|
||||
}
|
||||
free(X);
|
||||
return pred;
|
||||
}
|
||||
float network_accuracy_gpu(network net, data d)
|
||||
{
|
||||
matrix guess = network_predict_data_gpu(net, d);
|
||||
float acc = matrix_accuracy(d.y, guess);
|
||||
free_matrix(guess);
|
||||
return acc;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif
|
23
src/opencl.c
23
src/opencl.c
@ -4,7 +4,10 @@
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
//#include <clBLAS.h>
|
||||
|
||||
#ifdef CLBLAS
|
||||
#include <clBLAS.h>
|
||||
#endif
|
||||
|
||||
#include "opencl.h"
|
||||
#include "utils.h"
|
||||
@ -81,7 +84,7 @@ cl_info cl_init()
|
||||
|
||||
}
|
||||
int index = getpid()%num_devices;
|
||||
index = 1;
|
||||
index = 0;
|
||||
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
|
||||
info.device = devices[index];
|
||||
fprintf(stderr, "Found %d device(s)\n", num_devices);
|
||||
@ -95,24 +98,14 @@ cl_info cl_init()
|
||||
check_error(info);
|
||||
info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
|
||||
check_error(info);
|
||||
for(i = 0; i < NUM_QUEUES; ++i){
|
||||
info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
|
||||
check_error(info);
|
||||
}
|
||||
//info.error = clblasSetup();
|
||||
#ifdef CLBLAS
|
||||
info.error = clblasSetup();
|
||||
#endif
|
||||
check_error(info);
|
||||
info.initialized = 1;
|
||||
return info;
|
||||
}
|
||||
|
||||
void wait_for_queues()
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < NUM_QUEUES; ++i){
|
||||
clFinish(cl.queues[i]);
|
||||
}
|
||||
}
|
||||
|
||||
cl_program cl_fprog(char *filename, char *options, cl_info info)
|
||||
{
|
||||
size_t srcsize;
|
||||
|
@ -7,7 +7,6 @@
|
||||
#include <CL/cl.h>
|
||||
#endif
|
||||
|
||||
#define NUM_QUEUES 8
|
||||
|
||||
typedef struct {
|
||||
int initialized;
|
||||
@ -16,13 +15,11 @@ typedef struct {
|
||||
cl_device_id device;
|
||||
cl_context context;
|
||||
cl_command_queue queue;
|
||||
cl_command_queue queues[NUM_QUEUES];
|
||||
}cl_info;
|
||||
|
||||
extern cl_info cl;
|
||||
|
||||
void cl_setup();
|
||||
void wait_for_queues();
|
||||
void check_error(cl_info info);
|
||||
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
|
||||
void cl_read_array(cl_mem mem, float *x, int n);
|
||||
|
@ -50,6 +50,12 @@ void backward_softmax_layer(const softmax_layer layer, float *delta)
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_softmax_layer_output(const softmax_layer layer)
|
||||
{
|
||||
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
|
||||
}
|
||||
|
||||
cl_kernel get_softmax_forward_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
@ -77,6 +83,12 @@ void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
|
||||
|
||||
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
|
||||
/*
|
||||
cl_read_array(layer.output_cl, layer.output, layer.inputs*layer.batch);
|
||||
int z;
|
||||
for(z = 0; z < layer.inputs*layer.batch; ++z) printf("%f,",layer.output[z]);
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
|
||||
|
@ -20,6 +20,7 @@ void forward_softmax_layer(const softmax_layer layer, float *input);
|
||||
void backward_softmax_layer(const softmax_layer layer, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void pull_softmax_layer_output(const softmax_layer layer);
|
||||
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user