darknet/src/rnn_layer.c

276 lines
9.6 KiB
C
Raw Normal View History

2016-01-28 23:30:38 +03:00
#include "rnn_layer.h"
#include "connected_layer.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "gemm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize)
{
printf("%d %d\n", batch, steps);
batch = batch / steps;
layer l = {0};
l.batch = batch;
l.type = RNN;
l.steps = steps;
l.hidden = hidden;
l.inputs = inputs;
l.state = calloc(batch*hidden, sizeof(float));
l.input_layer = malloc(sizeof(layer));
*(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize);
l.input_layer->batch = batch;
l.self_layer = malloc(sizeof(layer));
*(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, activation, batch_normalize);
l.self_layer->batch = batch;
l.output_layer = malloc(sizeof(layer));
*(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize);
l.output_layer->batch = batch;
l.outputs = outputs;
l.output = l.output_layer->output;
l.delta = l.output_layer->delta;
#ifdef GPU
l.state_gpu = cuda_make_array(l.state, batch*hidden);
l.output_gpu = l.output_layer->output_gpu;
l.delta_gpu = l.output_layer->delta_gpu;
#endif
fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
return l;
}
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
{
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
}
void forward_rnn_layer(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
int i;
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1);
for (i = 0; i < l.steps; ++i) {
s.input = state.input;
forward_connected_layer(input_layer, s);
s.input = l.state;
forward_connected_layer(self_layer, s);
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
s.input = l.state;
forward_connected_layer(output_layer, s);
state.input += l.inputs*l.batch;
input_layer.output += l.hidden*l.batch;
self_layer.output += l.hidden*l.batch;
output_layer.output += l.outputs*l.batch;
}
}
void backward_rnn_layer(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
int i;
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
input_layer.output += l.hidden*l.batch*(l.steps-1);
input_layer.delta += l.hidden*l.batch*(l.steps-1);
self_layer.output += l.hidden*l.batch*(l.steps-1);
self_layer.delta += l.hidden*l.batch*(l.steps-1);
output_layer.output += l.outputs*l.batch*(l.steps-1);
output_layer.delta += l.outputs*l.batch*(l.steps-1);
for (i = l.steps-1; i >= 0; --i) {
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
s.input = l.state;
s.delta = self_layer.delta;
backward_connected_layer(output_layer, s);
if(i > 0){
copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
}else{
fill_cpu(l.hidden * l.batch, 0, l.state, 1);
}
s.input = l.state;
s.delta = self_layer.delta - l.hidden*l.batch;
if (i == 0) s.delta = 0;
backward_connected_layer(self_layer, s);
copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
s.input = state.input + i*l.inputs*l.batch;
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
else s.delta = 0;
backward_connected_layer(input_layer, s);
input_layer.output -= l.hidden*l.batch;
input_layer.delta -= l.hidden*l.batch;
self_layer.output -= l.hidden*l.batch;
self_layer.delta -= l.hidden*l.batch;
output_layer.output -= l.outputs*l.batch;
output_layer.delta -= l.outputs*l.batch;
}
}
#ifdef GPU
void pull_rnn_layer(layer l)
{
pull_connected_layer(*(l.input_layer));
pull_connected_layer(*(l.self_layer));
pull_connected_layer(*(l.output_layer));
}
void push_rnn_layer(layer l)
{
push_connected_layer(*(l.input_layer));
push_connected_layer(*(l.self_layer));
push_connected_layer(*(l.output_layer));
}
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
{
update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay);
}
void forward_rnn_layer_gpu(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
int i;
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
for (i = 0; i < l.steps; ++i) {
s.input = state.input;
forward_connected_layer_gpu(input_layer, s);
s.input = l.state_gpu;
forward_connected_layer_gpu(self_layer, s);
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
forward_connected_layer_gpu(output_layer, s);
state.input += l.inputs*l.batch;
input_layer.output_gpu += l.hidden*l.batch;
input_layer.x_gpu += l.hidden*l.batch;
input_layer.x_norm_gpu += l.hidden*l.batch;
self_layer.output_gpu += l.hidden*l.batch;
self_layer.x_gpu += l.hidden*l.batch;
self_layer.x_norm_gpu += l.hidden*l.batch;
output_layer.output_gpu += l.outputs*l.batch;
output_layer.x_gpu += l.outputs*l.batch;
output_layer.x_norm_gpu += l.outputs*l.batch;
}
}
void backward_rnn_layer_gpu(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
int i;
layer input_layer = *(l.input_layer);
layer self_layer = *(l.self_layer);
layer output_layer = *(l.output_layer);
input_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
input_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
input_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
input_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
self_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
self_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
self_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
self_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
output_layer.output_gpu += l.outputs*l.batch*(l.steps-1);
output_layer.delta_gpu += l.outputs*l.batch*(l.steps-1);
output_layer.x_gpu += l.outputs*l.batch*(l.steps-1);
output_layer.x_norm_gpu += l.outputs*l.batch*(l.steps-1);
for (i = l.steps-1; i >= 0; --i) {
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
s.input = l.state_gpu;
s.delta = self_layer.delta_gpu;
backward_connected_layer_gpu(output_layer, s);
if(i > 0){
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
}else{
fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
}
s.input = l.state_gpu;
s.delta = self_layer.delta_gpu - l.hidden*l.batch;
if (i == 0) s.delta = 0;
backward_connected_layer_gpu(self_layer, s);
copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
s.input = state.input + i*l.inputs*l.batch;
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
else s.delta = 0;
backward_connected_layer_gpu(input_layer, s);
input_layer.output_gpu -= l.hidden*l.batch;
input_layer.delta_gpu -= l.hidden*l.batch;
input_layer.x_gpu -= l.hidden*l.batch;
input_layer.x_norm_gpu -= l.hidden*l.batch;
self_layer.output_gpu -= l.hidden*l.batch;
self_layer.delta_gpu -= l.hidden*l.batch;
self_layer.x_gpu -= l.hidden*l.batch;
self_layer.x_norm_gpu -= l.hidden*l.batch;
output_layer.output_gpu -= l.outputs*l.batch;
output_layer.delta_gpu -= l.outputs*l.batch;
output_layer.x_gpu -= l.outputs*l.batch;
output_layer.x_norm_gpu -= l.outputs*l.batch;
}
}
#endif