mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
lots of stuff
This commit is contained in:
parent
1578ec70d7
commit
913d355ec1
2
Makefile
2
Makefile
@ -34,7 +34,7 @@ CFLAGS+= -DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o rnn.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o yolo_kernels.o coco_kernels.o
|
||||
endif
|
||||
|
12
src/blas.c
12
src/blas.c
@ -67,7 +67,7 @@ void normalize_cpu(float *x, float *mean, float *variance, int batch, int filter
|
||||
for(f = 0; f < filters; ++f){
|
||||
for(i = 0; i < spatial; ++i){
|
||||
int index = b*filters*spatial + f*spatial + i;
|
||||
x[index] = (x[index] - mean[f])/(sqrt(variance[f]));
|
||||
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .00001f);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -115,6 +115,16 @@ void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
|
||||
}
|
||||
|
||||
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
float diff = truth[i] - pred[i];
|
||||
if(fabs(diff) > 1) delta[i] = diff;
|
||||
else delta[i] = (diff > 0) ? 1 : -1;
|
||||
}
|
||||
}
|
||||
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i;
|
||||
|
11
src/blas.h
11
src/blas.h
@ -17,11 +17,18 @@ void fill_cpu(int N, float ALPHA, float * X, int INCX);
|
||||
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
|
||||
void test_gpu_blas();
|
||||
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
||||
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta);
|
||||
|
||||
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean);
|
||||
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
|
||||
|
||||
void scale_bias(float *output, float *scales, int batch, int n, int size);
|
||||
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
||||
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta);
|
||||
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta);
|
||||
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta);
|
||||
|
||||
#ifdef GPU
|
||||
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
||||
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
@ -46,5 +53,9 @@ void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *varianc
|
||||
void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
|
||||
void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
||||
void smooth_l1_gpu(int n, float *pred, float *truth, float *delta);
|
||||
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
||||
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
#endif
|
||||
#endif
|
||||
|
@ -409,3 +409,19 @@ extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int
|
||||
shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(i < n){
|
||||
float diff = truth[i] - pred[i];
|
||||
if(abs(diff) > 1) delta[i] = diff;
|
||||
else delta[i] = (diff > 0) ? 1 : -1;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta)
|
||||
{
|
||||
smooth_l1_kernel<<<cuda_gridsize(n), BLOCK>>>(n, pred, truth, delta);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
@ -9,7 +9,7 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize)
|
||||
{
|
||||
int i;
|
||||
connected_layer l = {0};
|
||||
@ -18,9 +18,10 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.inputs = inputs;
|
||||
l.outputs = outputs;
|
||||
l.batch=batch;
|
||||
l.batch_normalize = batch_normalize;
|
||||
|
||||
l.output = calloc(batch*outputs, sizeof(float*));
|
||||
l.delta = calloc(batch*outputs, sizeof(float*));
|
||||
l.output = calloc(batch*outputs, sizeof(float));
|
||||
l.delta = calloc(batch*outputs, sizeof(float));
|
||||
|
||||
l.weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
l.bias_updates = calloc(outputs, sizeof(float));
|
||||
@ -39,6 +40,25 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(outputs, sizeof(float));
|
||||
l.scale_updates = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i){
|
||||
l.scales[i] = 1;
|
||||
}
|
||||
|
||||
l.mean = calloc(outputs, sizeof(float));
|
||||
l.mean_delta = calloc(outputs, sizeof(float));
|
||||
l.variance = calloc(outputs, sizeof(float));
|
||||
l.variance_delta = calloc(outputs, sizeof(float));
|
||||
|
||||
l.rolling_mean = calloc(outputs, sizeof(float));
|
||||
l.rolling_variance = calloc(outputs, sizeof(float));
|
||||
|
||||
l.x = calloc(batch*outputs, sizeof(float));
|
||||
l.x_norm = calloc(batch*outputs, sizeof(float));
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
l.weights_gpu = cuda_make_array(l.weights, outputs*inputs);
|
||||
l.biases_gpu = cuda_make_array(l.biases, outputs);
|
||||
@ -48,6 +68,22 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
|
||||
l.output_gpu = cuda_make_array(l.output, outputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
|
||||
if(batch_normalize){
|
||||
l.scales_gpu = cuda_make_array(l.scales, outputs);
|
||||
l.scale_updates_gpu = cuda_make_array(l.scale_updates, outputs);
|
||||
|
||||
l.mean_gpu = cuda_make_array(l.mean, outputs);
|
||||
l.variance_gpu = cuda_make_array(l.variance, outputs);
|
||||
|
||||
l.rolling_mean_gpu = cuda_make_array(l.mean, outputs);
|
||||
l.rolling_variance_gpu = cuda_make_array(l.variance, outputs);
|
||||
|
||||
l.mean_delta_gpu = cuda_make_array(l.mean, outputs);
|
||||
l.variance_delta_gpu = cuda_make_array(l.variance, outputs);
|
||||
|
||||
l.x_gpu = cuda_make_array(l.output, l.batch*outputs);
|
||||
l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs);
|
||||
}
|
||||
#endif
|
||||
l.activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
@ -59,6 +95,11 @@ void update_connected_layer(connected_layer l, int batch, float learning_rate, f
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
||||
|
||||
if(l.batch_normalize){
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
|
||||
scal_cpu(l.outputs, momentum, l.scale_updates, 1);
|
||||
}
|
||||
|
||||
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
|
||||
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
|
||||
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
|
||||
@ -67,9 +108,7 @@ void update_connected_layer(connected_layer l, int batch, float learning_rate, f
|
||||
void forward_connected_layer(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
|
||||
}
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
@ -77,6 +116,27 @@ void forward_connected_layer(connected_layer l, network_state state)
|
||||
float *b = l.weights;
|
||||
float *c = l.output;
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
if(l.batch_normalize){
|
||||
if(state.train){
|
||||
mean_cpu(l.output, l.batch, l.outputs, 1, l.mean);
|
||||
variance_cpu(l.output, l.mean, l.batch, l.outputs, 1, l.variance);
|
||||
|
||||
scal_cpu(l.outputs, .95, l.rolling_mean, 1);
|
||||
axpy_cpu(l.outputs, .05, l.mean, 1, l.rolling_mean, 1);
|
||||
scal_cpu(l.outputs, .95, l.rolling_variance, 1);
|
||||
axpy_cpu(l.outputs, .05, l.variance, 1, l.rolling_variance, 1);
|
||||
|
||||
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
|
||||
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.outputs, 1);
|
||||
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
|
||||
} else {
|
||||
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.outputs, 1);
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.outputs, 1);
|
||||
}
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_cpu(l.outputs, 1, l.biases, 1, l.output + i*l.outputs, 1);
|
||||
}
|
||||
activate_array(l.output, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
@ -87,6 +147,16 @@ void backward_connected_layer(connected_layer l, network_state state)
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
|
||||
}
|
||||
if(l.batch_normalize){
|
||||
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.outputs, 1, l.scale_updates);
|
||||
|
||||
scale_bias(l.delta, l.scales, l.batch, l.outputs, 1);
|
||||
|
||||
mean_delta_cpu(l.delta, l.variance, l.batch, l.outputs, 1, l.mean_delta);
|
||||
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.outputs, 1, l.variance_delta);
|
||||
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.outputs, 1, l.delta);
|
||||
}
|
||||
|
||||
int m = l.outputs;
|
||||
int k = l.batch;
|
||||
int n = l.inputs;
|
||||
@ -114,6 +184,11 @@ void pull_connected_layer(connected_layer l)
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
if (l.batch_normalize){
|
||||
cuda_pull_array(l.scales_gpu, l.scales, l.outputs);
|
||||
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
|
||||
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
|
||||
}
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer l)
|
||||
@ -122,6 +197,11 @@ void push_connected_layer(connected_layer l)
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
if (l.batch_normalize){
|
||||
cuda_push_array(l.scales_gpu, l.scales, l.outputs);
|
||||
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.outputs);
|
||||
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.outputs);
|
||||
}
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
@ -129,6 +209,11 @@ void update_connected_layer_gpu(connected_layer l, int batch, float learning_rat
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
if(l.batch_normalize){
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1);
|
||||
}
|
||||
|
||||
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
||||
@ -137,9 +222,12 @@ void update_connected_layer_gpu(connected_layer l, int batch, float learning_rat
|
||||
void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
|
||||
}
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
/*
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
|
||||
}
|
||||
*/
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
@ -147,13 +235,35 @@ void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
float * b = l.weights_gpu;
|
||||
float * c = l.output_gpu;
|
||||
gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
if(l.batch_normalize){
|
||||
if(state.train){
|
||||
fast_mean_gpu(l.output_gpu, l.batch, l.outputs, 1, l.mean_gpu);
|
||||
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.outputs, 1, l.variance_gpu);
|
||||
|
||||
scal_ongpu(l.outputs, .95, l.rolling_mean_gpu, 1);
|
||||
axpy_ongpu(l.outputs, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
||||
scal_ongpu(l.outputs, .95, l.rolling_variance_gpu, 1);
|
||||
axpy_ongpu(l.outputs, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
|
||||
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
|
||||
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1);
|
||||
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
|
||||
} else {
|
||||
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.outputs, 1);
|
||||
}
|
||||
|
||||
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.outputs, 1);
|
||||
}
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
|
||||
}
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
|
||||
/*
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
||||
float avg = mean_array(l.output, l.outputs*l.batch);
|
||||
printf("%f\n", avg);
|
||||
*/
|
||||
/*
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
||||
float avg = mean_array(l.output, l.outputs*l.batch);
|
||||
printf("%f\n", avg);
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
@ -161,8 +271,19 @@ void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
int i;
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
|
||||
axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
|
||||
}
|
||||
|
||||
if(l.batch_normalize){
|
||||
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.outputs, 1, l.scale_updates_gpu);
|
||||
|
||||
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.outputs, 1);
|
||||
|
||||
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.mean_delta_gpu);
|
||||
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.outputs, 1, l.variance_delta_gpu);
|
||||
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.outputs, 1, l.delta_gpu);
|
||||
}
|
||||
|
||||
int m = l.outputs;
|
||||
int k = l.batch;
|
||||
int n = l.inputs;
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
typedef layer connected_layer;
|
||||
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize);
|
||||
|
||||
void forward_connected_layer(connected_layer layer, network_state state);
|
||||
void backward_connected_layer(connected_layer layer, network_state state);
|
||||
|
@ -12,6 +12,21 @@ extern "C" {
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void binarize_filters_kernel(float *filters, int n, int size, float *binary)
|
||||
{
|
||||
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (f >= n) return;
|
||||
int i = 0;
|
||||
float mean = 0;
|
||||
for(i = 0; i < size; ++i){
|
||||
mean += abs(filters[f*size + i]);
|
||||
}
|
||||
mean = mean / size;
|
||||
for(i = 0; i < size; ++i){
|
||||
binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
|
||||
{
|
||||
int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
@ -50,6 +65,12 @@ __global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, in
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_filters_gpu(float *filters, int n, int size, float *mean)
|
||||
{
|
||||
binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, mean);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
||||
{
|
||||
backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
|
||||
@ -100,6 +121,13 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void swap_binary(convolutional_layer l)
|
||||
{
|
||||
float *swap = l.filters_gpu;
|
||||
l.filters_gpu = l.binary_filters_gpu;
|
||||
l.binary_filters_gpu = swap;
|
||||
}
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
@ -109,6 +137,11 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
convolutional_out_width(l);
|
||||
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
if(l.binary){
|
||||
binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
|
||||
swap_binary(l);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
float * a = l.filters_gpu;
|
||||
@ -122,12 +155,6 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.mean_gpu);
|
||||
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.variance_gpu);
|
||||
|
||||
/*
|
||||
cuda_pull_array(l.variance_gpu, l.mean, 1);
|
||||
printf("%f\n", l.mean[0]);
|
||||
*/
|
||||
|
||||
|
||||
scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
|
||||
axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
||||
scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
|
||||
@ -145,6 +172,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
|
||||
|
||||
activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
|
||||
if(l.binary) swap_binary(l);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
@ -178,6 +206,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
if(l.binary) swap_binary(l);
|
||||
float * a = l.filters_gpu;
|
||||
float * b = l.delta_gpu;
|
||||
float * c = l.col_image_gpu;
|
||||
@ -185,6 +214,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
|
||||
|
||||
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
|
||||
if(l.binary) swap_binary(l);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -41,7 +41,65 @@ image get_convolutional_delta(convolutional_layer l)
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
|
||||
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
||||
{
|
||||
int i,b,f;
|
||||
for(f = 0; f < n; ++f){
|
||||
float sum = 0;
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < size; ++i){
|
||||
int index = i + size*(f + n*b);
|
||||
sum += delta[index] * x_norm[index];
|
||||
}
|
||||
}
|
||||
scale_updates[f] += sum;
|
||||
}
|
||||
}
|
||||
|
||||
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
|
||||
{
|
||||
|
||||
int i,j,k;
|
||||
for(i = 0; i < filters; ++i){
|
||||
mean_delta[i] = 0;
|
||||
for (j = 0; j < batch; ++j) {
|
||||
for (k = 0; k < spatial; ++k) {
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
mean_delta[i] += delta[index];
|
||||
}
|
||||
}
|
||||
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
|
||||
}
|
||||
}
|
||||
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
|
||||
{
|
||||
|
||||
int i,j,k;
|
||||
for(i = 0; i < filters; ++i){
|
||||
variance_delta[i] = 0;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + i*spatial + k;
|
||||
variance_delta[i] += delta[index]*(x[index] - mean[i]);
|
||||
}
|
||||
}
|
||||
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
|
||||
}
|
||||
}
|
||||
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
|
||||
{
|
||||
int f, j, k;
|
||||
for(j = 0; j < batch; ++j){
|
||||
for(f = 0; f < filters; ++f){
|
||||
for(k = 0; k < spatial; ++k){
|
||||
int index = j*filters*spatial + f*spatial + k;
|
||||
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary)
|
||||
{
|
||||
int i;
|
||||
convolutional_layer l = {0};
|
||||
@ -51,6 +109,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.binary = binary;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
@ -78,6 +137,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
if(binary){
|
||||
l.binary_filters = calloc(c*n*size*size, sizeof(float));
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
l.scale_updates = calloc(n, sizeof(float));
|
||||
@ -106,6 +169,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
|
||||
if(binary){
|
||||
l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
l.mean_gpu = cuda_make_array(l.mean, n);
|
||||
l.variance_gpu = cuda_make_array(l.variance, n);
|
||||
@ -141,7 +208,7 @@ void denormalize_convolutional_layer(convolutional_layer l)
|
||||
|
||||
void test_convolutional_layer()
|
||||
{
|
||||
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1);
|
||||
convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0);
|
||||
l.batch_normalize = 1;
|
||||
float data[] = {1,1,1,1,1,
|
||||
1,1,1,1,1,
|
||||
|
@ -2,7 +2,6 @@
|
||||
#define CONVOLUTIONAL_LAYER_H
|
||||
|
||||
#include "cuda.h"
|
||||
#include "params.h"
|
||||
#include "image.h"
|
||||
#include "activations.h"
|
||||
#include "layer.h"
|
||||
@ -22,7 +21,7 @@ void add_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
|
||||
#endif
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization);
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization, int binary);
|
||||
void denormalize_convolutional_layer(convolutional_layer l);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
|
||||
|
@ -11,7 +11,8 @@ COST_TYPE get_cost_type(char *s)
|
||||
{
|
||||
if (strcmp(s, "sse")==0) return SSE;
|
||||
if (strcmp(s, "masked")==0) return MASKED;
|
||||
fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
|
||||
if (strcmp(s, "smooth")==0) return SMOOTH;
|
||||
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s);
|
||||
return SSE;
|
||||
}
|
||||
|
||||
@ -22,6 +23,8 @@ char *get_cost_string(COST_TYPE a)
|
||||
return "sse";
|
||||
case MASKED:
|
||||
return "masked";
|
||||
case SMOOTH:
|
||||
return "smooth";
|
||||
}
|
||||
return "sse";
|
||||
}
|
||||
@ -65,8 +68,12 @@ void forward_cost_layer(cost_layer l, network_state state)
|
||||
if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM;
|
||||
}
|
||||
}
|
||||
copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
|
||||
axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
|
||||
if(l.cost_type == SMOOTH){
|
||||
smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta);
|
||||
} else {
|
||||
copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
|
||||
axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
|
||||
}
|
||||
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
|
||||
//printf("cost: %f\n", *l.output);
|
||||
}
|
||||
@ -95,8 +102,12 @@ void forward_cost_layer_gpu(cost_layer l, network_state state)
|
||||
mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth);
|
||||
}
|
||||
|
||||
copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
|
||||
axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
|
||||
if(l.cost_type == SMOOTH){
|
||||
smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu);
|
||||
} else {
|
||||
copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
|
||||
axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
|
||||
}
|
||||
|
||||
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
||||
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
|
||||
|
@ -2,7 +2,6 @@
|
||||
#define CROP_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
|
@ -184,7 +184,7 @@ extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
|
||||
{
|
||||
cuda_random(layer.rand_gpu, layer.batch*8);
|
||||
|
||||
float radians = layer.angle*3.14159/180.;
|
||||
float radians = layer.angle*3.14159265/180.;
|
||||
|
||||
float scale = 2;
|
||||
float translate = -1;
|
||||
|
@ -20,6 +20,7 @@ extern void run_nightmare(int argc, char **argv);
|
||||
extern void run_dice(int argc, char **argv);
|
||||
extern void run_compare(int argc, char **argv);
|
||||
extern void run_classifier(int argc, char **argv);
|
||||
extern void run_char_rnn(int argc, char **argv);
|
||||
|
||||
void change_rate(char *filename, float scale, float add)
|
||||
{
|
||||
@ -203,7 +204,10 @@ int main(int argc, char **argv)
|
||||
return 0;
|
||||
}
|
||||
gpu_index = find_int_arg(argc, argv, "-i", 0);
|
||||
if(find_arg(argc, argv, "-nogpu")) gpu_index = -1;
|
||||
if(find_arg(argc, argv, "-nogpu")) {
|
||||
gpu_index = -1;
|
||||
printf("nogpu\n");
|
||||
}
|
||||
|
||||
#ifndef GPU
|
||||
gpu_index = -1;
|
||||
@ -220,6 +224,8 @@ int main(int argc, char **argv)
|
||||
average(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "yolo")){
|
||||
run_yolo(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "rnn")){
|
||||
run_char_rnn(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "coco")){
|
||||
run_coco(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "classifier")){
|
||||
|
@ -2,7 +2,6 @@
|
||||
#define DECONVOLUTIONAL_LAYER_H
|
||||
|
||||
#include "cuda.h"
|
||||
#include "params.h"
|
||||
#include "image.h"
|
||||
#include "activations.h"
|
||||
#include "layer.h"
|
||||
|
@ -50,7 +50,7 @@ void forward_detection_layer(const detection_layer l, network_state state)
|
||||
int index = b*l.inputs;
|
||||
for (i = 0; i < locations; ++i) {
|
||||
int offset = i*l.classes;
|
||||
softmax_array(l.output + index + offset, l.classes,
|
||||
softmax_array(l.output + index + offset, l.classes, 1,
|
||||
l.output + index + offset);
|
||||
}
|
||||
int offset = locations*l.classes;
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include "dropout_layer.h"
|
||||
#include "params.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
#include <stdlib.h>
|
||||
|
@ -1,7 +1,6 @@
|
||||
#ifndef DROPOUT_LAYER_H
|
||||
#define DROPOUT_LAYER_H
|
||||
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
|
@ -6,7 +6,6 @@ extern "C" {
|
||||
#include "dropout_layer.h"
|
||||
#include "cuda.h"
|
||||
#include "utils.h"
|
||||
#include "params.h"
|
||||
}
|
||||
|
||||
__global__ void yoloswag420blazeit360noscope(float *input, int size, float *rand, float prob, float scale)
|
||||
|
@ -708,6 +708,8 @@ image resize_image(image im, int w, int h)
|
||||
void test_resize(char *filename)
|
||||
{
|
||||
image im = load_image(filename, 0,0, 3);
|
||||
float mag = mag_array(im.data, im.w*im.h*im.c);
|
||||
printf("L2 Norm: %f\n", mag);
|
||||
image gray = grayscale_image(im);
|
||||
|
||||
image sat2 = copy_image(im);
|
||||
|
26
src/layer.h
26
src/layer.h
@ -21,11 +21,12 @@ typedef enum {
|
||||
AVGPOOL,
|
||||
LOCAL,
|
||||
SHORTCUT,
|
||||
ACTIVE
|
||||
ACTIVE,
|
||||
RNN
|
||||
} LAYER_TYPE;
|
||||
|
||||
typedef enum{
|
||||
SSE, MASKED
|
||||
SSE, MASKED, SMOOTH
|
||||
} COST_TYPE;
|
||||
|
||||
struct layer{
|
||||
@ -50,6 +51,9 @@ struct layer{
|
||||
int sqrt;
|
||||
int flip;
|
||||
int index;
|
||||
int binary;
|
||||
int steps;
|
||||
int hidden;
|
||||
float angle;
|
||||
float jitter;
|
||||
float saturation;
|
||||
@ -77,6 +81,7 @@ struct layer{
|
||||
int dontload;
|
||||
int dontloadscales;
|
||||
|
||||
float temperature;
|
||||
float probability;
|
||||
float scale;
|
||||
|
||||
@ -85,6 +90,9 @@ struct layer{
|
||||
float *cost;
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
float *state;
|
||||
|
||||
float *binary_filters;
|
||||
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
@ -107,14 +115,28 @@ struct layer{
|
||||
float * mean;
|
||||
float * variance;
|
||||
|
||||
float * mean_delta;
|
||||
float * variance_delta;
|
||||
|
||||
float * rolling_mean;
|
||||
float * rolling_variance;
|
||||
|
||||
float * x;
|
||||
float * x_norm;
|
||||
|
||||
struct layer *input_layer;
|
||||
struct layer *self_layer;
|
||||
struct layer *output_layer;
|
||||
|
||||
#ifdef GPU
|
||||
int *indexes_gpu;
|
||||
float * state_gpu;
|
||||
float * filters_gpu;
|
||||
float * filter_updates_gpu;
|
||||
|
||||
float *binary_filters_gpu;
|
||||
float *mean_filters_gpu;
|
||||
|
||||
float * spatial_mean_gpu;
|
||||
float * spatial_variance_gpu;
|
||||
|
||||
|
@ -2,7 +2,6 @@
|
||||
#define MAXPOOL_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
#include "cuda.h"
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
@ -8,6 +8,7 @@
|
||||
|
||||
#include "crop_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "rnn_layer.h"
|
||||
#include "local_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "activation_layer.h"
|
||||
@ -82,6 +83,8 @@ char *get_layer_string(LAYER_TYPE a)
|
||||
return "deconvolutional";
|
||||
case CONNECTED:
|
||||
return "connected";
|
||||
case RNN:
|
||||
return "rnn";
|
||||
case MAXPOOL:
|
||||
return "maxpool";
|
||||
case AVGPOOL:
|
||||
@ -144,6 +147,8 @@ void forward_network(network net, network_state state)
|
||||
forward_detection_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer(l, state);
|
||||
} else if(l.type == RNN){
|
||||
forward_rnn_layer(l, state);
|
||||
} else if(l.type == CROP){
|
||||
forward_crop_layer(l, state);
|
||||
} else if(l.type == COST){
|
||||
@ -178,6 +183,8 @@ void update_network(network net)
|
||||
update_deconvolutional_layer(l, rate, net.momentum, net.decay);
|
||||
} else if(l.type == CONNECTED){
|
||||
update_connected_layer(l, update_batch, rate, net.momentum, net.decay);
|
||||
} else if(l.type == RNN){
|
||||
update_rnn_layer(l, update_batch, rate, net.momentum, net.decay);
|
||||
} else if(l.type == LOCAL){
|
||||
update_local_layer(l, update_batch, rate, net.momentum, net.decay);
|
||||
}
|
||||
@ -252,6 +259,8 @@ void backward_network(network net, network_state state)
|
||||
if(i != 0) backward_softmax_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
backward_connected_layer(l, state);
|
||||
} else if(l.type == RNN){
|
||||
backward_rnn_layer(l, state);
|
||||
} else if(l.type == LOCAL){
|
||||
backward_local_layer(l, state);
|
||||
} else if(l.type == COST){
|
||||
|
@ -5,7 +5,6 @@
|
||||
#include "image.h"
|
||||
#include "layer.h"
|
||||
#include "data.h"
|
||||
#include "params.h"
|
||||
|
||||
typedef enum {
|
||||
CONSTANT, STEP, EXP, POLY, STEPS, SIG
|
||||
@ -28,6 +27,7 @@ typedef struct network{
|
||||
float gamma;
|
||||
float scale;
|
||||
float power;
|
||||
int time_steps;
|
||||
int step;
|
||||
int max_batches;
|
||||
float *scales;
|
||||
@ -77,6 +77,7 @@ void update_network(network net);
|
||||
float train_network(network net, data d);
|
||||
float train_network_batch(network net, data d, int n);
|
||||
float train_network_sgd(network net, data d, int n);
|
||||
float train_network_datum(network net, float *x, float *y);
|
||||
|
||||
matrix network_predict_data(network net, data test);
|
||||
float *network_predict(network net, float *input);
|
||||
|
@ -11,11 +11,11 @@ extern "C" {
|
||||
#include "image.h"
|
||||
#include "data.h"
|
||||
#include "utils.h"
|
||||
#include "params.h"
|
||||
#include "parser.h"
|
||||
|
||||
#include "crop_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "rnn_layer.h"
|
||||
#include "detection_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
#include "activation_layer.h"
|
||||
@ -57,6 +57,8 @@ void forward_network_gpu(network net, network_state state)
|
||||
forward_detection_layer_gpu(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer_gpu(l, state);
|
||||
} else if(l.type == RNN){
|
||||
forward_rnn_layer_gpu(l, state);
|
||||
} else if(l.type == CROP){
|
||||
forward_crop_layer_gpu(l, state);
|
||||
} else if(l.type == COST){
|
||||
@ -118,6 +120,8 @@ void backward_network_gpu(network net, network_state state)
|
||||
if(i != 0) backward_softmax_layer_gpu(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
backward_connected_layer_gpu(l, state);
|
||||
} else if(l.type == RNN){
|
||||
backward_rnn_layer_gpu(l, state);
|
||||
} else if(l.type == COST){
|
||||
backward_cost_layer_gpu(l, state);
|
||||
} else if(l.type == ROUTE){
|
||||
@ -141,6 +145,8 @@ void update_network_gpu(network net)
|
||||
update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay);
|
||||
} else if(l.type == CONNECTED){
|
||||
update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
|
||||
} else if(l.type == RNN){
|
||||
update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
|
||||
} else if(l.type == LOCAL){
|
||||
update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay);
|
||||
}
|
||||
|
@ -4,6 +4,10 @@
|
||||
#include "blas.h"
|
||||
#include "utils.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
float abs_mean(float *x, int n)
|
||||
{
|
||||
int i;
|
||||
@ -167,6 +171,10 @@ void reconstruct_picture(network net, float *features, image recon, image update
|
||||
|
||||
translate_image(recon, 1);
|
||||
scale_image(recon, .5);
|
||||
|
||||
float mag = mag_array(recon.data, recon.w*recon.h*recon.c);
|
||||
scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1);
|
||||
|
||||
constrain_image(recon);
|
||||
free_image(delta);
|
||||
}
|
||||
@ -222,10 +230,21 @@ void run_nightmare(int argc, char **argv)
|
||||
image update;
|
||||
if (reconstruct){
|
||||
resize_network(&net, im.w, im.h);
|
||||
int size = get_network_output_size(net);
|
||||
features = calloc(size, sizeof(float));
|
||||
float *out = network_predict(net, im.data);
|
||||
copy_cpu(size, out, 1, features, 1);
|
||||
|
||||
int zz = 0;
|
||||
network_predict(net, im.data);
|
||||
image out_im = get_network_image(net);
|
||||
image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz);
|
||||
//flip_image(crop);
|
||||
image f_im = resize_image(crop, out_im.w, out_im.h);
|
||||
free_image(crop);
|
||||
printf("%d features\n", out_im.w*out_im.h*out_im.c);
|
||||
|
||||
|
||||
im = resize_image(im, im.w*2, im.h);
|
||||
f_im = resize_image(f_im, f_im.w*2, f_im.h);
|
||||
features = f_im.data;
|
||||
|
||||
free_image(im);
|
||||
im = make_random_image(im.w, im.h, im.c);
|
||||
update = make_image(im.w, im.h, im.c);
|
||||
|
@ -1 +0,0 @@
|
||||
|
98
src/parser.c
98
src/parser.c
@ -11,6 +11,7 @@
|
||||
#include "normalization_layer.h"
|
||||
#include "deconvolutional_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "rnn_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
@ -34,6 +35,7 @@ int is_activation(section *s);
|
||||
int is_local(section *s);
|
||||
int is_deconvolutional(section *s);
|
||||
int is_connected(section *s);
|
||||
int is_rnn(section *s);
|
||||
int is_maxpool(section *s);
|
||||
int is_avgpool(section *s);
|
||||
int is_dropout(section *s);
|
||||
@ -85,6 +87,7 @@ typedef struct size_params{
|
||||
int w;
|
||||
int c;
|
||||
int index;
|
||||
int time_steps;
|
||||
} size_params;
|
||||
|
||||
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
|
||||
@ -151,8 +154,9 @@ convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
int binary = option_find_int_quiet(options, "binary", 0);
|
||||
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize);
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
|
||||
layer.flipped = option_find_int_quiet(options, "flipped", 0);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
@ -165,13 +169,27 @@ convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
return layer;
|
||||
}
|
||||
|
||||
layer parse_rnn(list *options, size_params params)
|
||||
{
|
||||
int output = option_find_int(options, "output",1);
|
||||
int hidden = option_find_int(options, "hidden",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
connected_layer parse_connected(list *options, size_params params)
|
||||
{
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
|
||||
connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
@ -185,8 +203,9 @@ connected_layer parse_connected(list *options, size_params params)
|
||||
|
||||
softmax_layer parse_softmax(list *options, size_params params)
|
||||
{
|
||||
int groups = option_find_int(options, "groups",1);
|
||||
int groups = option_find_int_quiet(options, "groups",1);
|
||||
softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
|
||||
layer.temperature = option_find_float_quiet(options, "temperature", 1);
|
||||
return layer;
|
||||
}
|
||||
|
||||
@ -388,7 +407,9 @@ void parse_net_options(list *options, network *net)
|
||||
net->momentum = option_find_float(options, "momentum", .9);
|
||||
net->decay = option_find_float(options, "decay", .0001);
|
||||
int subdivs = option_find_int(options, "subdivisions",1);
|
||||
net->time_steps = option_find_int_quiet(options, "time_steps",1);
|
||||
net->batch /= subdivs;
|
||||
net->batch *= net->time_steps;
|
||||
net->subdivisions = subdivs;
|
||||
|
||||
net->h = option_find_int_quiet(options, "height",0);
|
||||
@ -456,6 +477,7 @@ network parse_network_cfg(char *filename)
|
||||
params.c = net.c;
|
||||
params.inputs = net.inputs;
|
||||
params.batch = net.batch;
|
||||
params.time_steps = net.time_steps;
|
||||
|
||||
n = n->next;
|
||||
int count = 0;
|
||||
@ -474,6 +496,8 @@ network parse_network_cfg(char *filename)
|
||||
l = parse_activation(options, params);
|
||||
}else if(is_deconvolutional(s)){
|
||||
l = parse_deconvolutional(options, params);
|
||||
}else if(is_rnn(s)){
|
||||
l = parse_rnn(options, params);
|
||||
}else if(is_connected(s)){
|
||||
l = parse_connected(options, params);
|
||||
}else if(is_crop(s)){
|
||||
@ -564,6 +588,10 @@ int is_network(section *s)
|
||||
return (strcmp(s->type, "[net]")==0
|
||||
|| strcmp(s->type, "[network]")==0);
|
||||
}
|
||||
int is_rnn(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[rnn]")==0);
|
||||
}
|
||||
int is_connected(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[conn]")==0
|
||||
@ -674,6 +702,22 @@ void save_weights_double(network net, char *filename)
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void save_connected_weights(layer l, FILE *fp)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
fwrite(l.biases, sizeof(float), l.outputs, fp);
|
||||
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
if (l.batch_normalize){
|
||||
fwrite(l.scales, sizeof(float), l.outputs, fp);
|
||||
fwrite(l.rolling_mean, sizeof(float), l.outputs, fp);
|
||||
fwrite(l.rolling_variance, sizeof(float), l.outputs, fp);
|
||||
}
|
||||
}
|
||||
|
||||
void save_weights_upto(network net, char *filename, int cutoff)
|
||||
{
|
||||
fprintf(stderr, "Saving weights to %s\n", filename);
|
||||
@ -706,13 +750,11 @@ void save_weights_upto(network net, char *filename, int cutoff)
|
||||
}
|
||||
fwrite(l.filters, sizeof(float), num, fp);
|
||||
} if(l.type == CONNECTED){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
fwrite(l.biases, sizeof(float), l.outputs, fp);
|
||||
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
save_connected_weights(l, fp);
|
||||
} if(l.type == RNN){
|
||||
save_connected_weights(*(l.input_layer), fp);
|
||||
save_connected_weights(*(l.self_layer), fp);
|
||||
save_connected_weights(*(l.output_layer), fp);
|
||||
} if(l.type == LOCAL){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
@ -745,6 +787,25 @@ void transpose_matrix(float *a, int rows, int cols)
|
||||
free(transpose);
|
||||
}
|
||||
|
||||
void load_connected_weights(layer l, FILE *fp, int transpose)
|
||||
{
|
||||
fread(l.biases, sizeof(float), l.outputs, fp);
|
||||
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
if(transpose){
|
||||
transpose_matrix(l.weights, l.inputs, l.outputs);
|
||||
}
|
||||
if (l.batch_normalize && (!l.dontloadscales)){
|
||||
fread(l.scales, sizeof(float), l.outputs, fp);
|
||||
fread(l.rolling_mean, sizeof(float), l.outputs, fp);
|
||||
fread(l.rolling_variance, sizeof(float), l.outputs, fp);
|
||||
}
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
{
|
||||
fprintf(stderr, "Loading weights from %s...", filename);
|
||||
@ -759,6 +820,7 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
fread(&minor, sizeof(int), 1, fp);
|
||||
fread(&revision, sizeof(int), 1, fp);
|
||||
fread(net->seen, sizeof(int), 1, fp);
|
||||
int transpose = (major > 1000) || (minor > 1000);
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net->n && i < cutoff; ++i){
|
||||
@ -793,16 +855,12 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
#endif
|
||||
}
|
||||
if(l.type == CONNECTED){
|
||||
fread(l.biases, sizeof(float), l.outputs, fp);
|
||||
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
if(major > 1000 || minor > 1000){
|
||||
transpose_matrix(l.weights, l.inputs, l.outputs);
|
||||
}
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
load_connected_weights(l, fp, transpose);
|
||||
}
|
||||
if(l.type == RNN){
|
||||
load_connected_weights(*(l.input_layer), fp, transpose);
|
||||
load_connected_weights(*(l.self_layer), fp, transpose);
|
||||
load_connected_weights(*(l.output_layer), fp, transpose);
|
||||
}
|
||||
if(l.type == LOCAL){
|
||||
int locations = l.out_w*l.out_h;
|
||||
|
147
src/rnn.c
Normal file
147
src/rnn.c
Normal file
@ -0,0 +1,147 @@
|
||||
#include "network.h"
|
||||
#include "cost_layer.h"
|
||||
#include "utils.h"
|
||||
#include "parser.h"
|
||||
|
||||
#ifdef OPENCV
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
float *x;
|
||||
float *y;
|
||||
} float_pair;
|
||||
|
||||
float_pair get_rnn_data(char *text, int len, int batch, int steps)
|
||||
{
|
||||
float *x = calloc(batch * steps * 256, sizeof(float));
|
||||
float *y = calloc(batch * steps * 256, sizeof(float));
|
||||
int i,j;
|
||||
for(i = 0; i < batch; ++i){
|
||||
int index = rand() %(len - steps - 1);
|
||||
for(j = 0; j < steps; ++j){
|
||||
x[(j*batch + i)*256 + text[index + j]] = 1;
|
||||
y[(j*batch + i)*256 + text[index + j + 1]] = 1;
|
||||
}
|
||||
}
|
||||
float_pair p;
|
||||
p.x = x;
|
||||
p.y = y;
|
||||
return p;
|
||||
}
|
||||
|
||||
void train_char_rnn(char *cfgfile, char *weightfile, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "r");
|
||||
//FILE *fp = fopen("data/ab.txt", "r");
|
||||
//FILE *fp = fopen("data/grrm/asoiaf.txt", "r");
|
||||
|
||||
fseek(fp, 0, SEEK_END);
|
||||
size_t size = ftell(fp);
|
||||
fseek(fp, 0, SEEK_SET);
|
||||
|
||||
char *text = calloc(size, sizeof(char));
|
||||
fread(text, 1, size, fp);
|
||||
fclose(fp);
|
||||
|
||||
char *backup_directory = "/home/pjreddie/backup/";
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int batch = net.batch;
|
||||
int steps = net.time_steps;
|
||||
int i = (*net.seen)/net.batch;
|
||||
|
||||
clock_t time;
|
||||
while(get_current_batch(net) < net.max_batches){
|
||||
i += 1;
|
||||
time=clock();
|
||||
float_pair p = get_rnn_data(text, size, batch/steps, steps);
|
||||
|
||||
float loss = train_network_datum(net, p.x, p.y) / (batch);
|
||||
free(p.x);
|
||||
free(p.y);
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed)
|
||||
{
|
||||
srand(rseed);
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
|
||||
int i, j;
|
||||
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
||||
char c;
|
||||
int len = strlen(seed);
|
||||
float *input = calloc(256, sizeof(float));
|
||||
for(i = 0; i < len-1; ++i){
|
||||
c = seed[i];
|
||||
input[(int)c] = 1;
|
||||
network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
printf("%c", c);
|
||||
}
|
||||
c = seed[len-1];
|
||||
for(i = 0; i < num; ++i){
|
||||
printf("%c", c);
|
||||
float r = rand_uniform(0,1);
|
||||
float sum = 0;
|
||||
input[(int)c] = 1;
|
||||
float *out = network_predict(net, input);
|
||||
input[(int)c] = 0;
|
||||
for(j = 0; j < 256; ++j){
|
||||
sum += out[j];
|
||||
if(sum > r) break;
|
||||
}
|
||||
c = j;
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void run_char_rnn(int argc, char **argv)
|
||||
{
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
}
|
||||
char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
|
||||
char *seed = find_char_arg(argc, argv, "-seed", "\n");
|
||||
int len = find_int_arg(argc, argv, "-len", 100);
|
||||
float temp = find_float_arg(argc, argv, "-temp", 1);
|
||||
int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
||||
|
||||
char *cfg = argv[3];
|
||||
char *weights = (argc > 4) ? argv[4] : 0;
|
||||
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename);
|
||||
else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
|
||||
}
|
275
src/rnn_layer.c
Normal file
275
src/rnn_layer.c
Normal file
@ -0,0 +1,275 @@
|
||||
#include "rnn_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "utils.h"
|
||||
#include "cuda.h"
|
||||
#include "blas.h"
|
||||
#include "gemm.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize)
|
||||
{
|
||||
printf("%d %d\n", batch, steps);
|
||||
batch = batch / steps;
|
||||
layer l = {0};
|
||||
l.batch = batch;
|
||||
l.type = RNN;
|
||||
l.steps = steps;
|
||||
l.hidden = hidden;
|
||||
l.inputs = inputs;
|
||||
|
||||
l.state = calloc(batch*hidden, sizeof(float));
|
||||
|
||||
l.input_layer = malloc(sizeof(layer));
|
||||
*(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize);
|
||||
l.input_layer->batch = batch;
|
||||
|
||||
l.self_layer = malloc(sizeof(layer));
|
||||
*(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, activation, batch_normalize);
|
||||
l.self_layer->batch = batch;
|
||||
|
||||
l.output_layer = malloc(sizeof(layer));
|
||||
*(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize);
|
||||
l.output_layer->batch = batch;
|
||||
|
||||
l.outputs = outputs;
|
||||
l.output = l.output_layer->output;
|
||||
l.delta = l.output_layer->delta;
|
||||
|
||||
#ifdef GPU
|
||||
l.state_gpu = cuda_make_array(l.state, batch*hidden);
|
||||
l.output_gpu = l.output_layer->output_gpu;
|
||||
l.delta_gpu = l.output_layer->delta_gpu;
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
}
|
||||
|
||||
void forward_rnn_layer(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
layer output_layer = *(l.output_layer);
|
||||
|
||||
fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1);
|
||||
fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1);
|
||||
fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1);
|
||||
if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1);
|
||||
|
||||
for (i = 0; i < l.steps; ++i) {
|
||||
s.input = state.input;
|
||||
forward_connected_layer(input_layer, s);
|
||||
|
||||
s.input = l.state;
|
||||
forward_connected_layer(self_layer, s);
|
||||
|
||||
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
|
||||
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
|
||||
|
||||
s.input = l.state;
|
||||
forward_connected_layer(output_layer, s);
|
||||
|
||||
state.input += l.inputs*l.batch;
|
||||
input_layer.output += l.hidden*l.batch;
|
||||
self_layer.output += l.hidden*l.batch;
|
||||
output_layer.output += l.outputs*l.batch;
|
||||
}
|
||||
}
|
||||
|
||||
void backward_rnn_layer(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
layer output_layer = *(l.output_layer);
|
||||
input_layer.output += l.hidden*l.batch*(l.steps-1);
|
||||
input_layer.delta += l.hidden*l.batch*(l.steps-1);
|
||||
|
||||
self_layer.output += l.hidden*l.batch*(l.steps-1);
|
||||
self_layer.delta += l.hidden*l.batch*(l.steps-1);
|
||||
|
||||
output_layer.output += l.outputs*l.batch*(l.steps-1);
|
||||
output_layer.delta += l.outputs*l.batch*(l.steps-1);
|
||||
for (i = l.steps-1; i >= 0; --i) {
|
||||
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1);
|
||||
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1);
|
||||
|
||||
s.input = l.state;
|
||||
s.delta = self_layer.delta;
|
||||
backward_connected_layer(output_layer, s);
|
||||
|
||||
if(i > 0){
|
||||
copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1);
|
||||
axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1);
|
||||
}else{
|
||||
fill_cpu(l.hidden * l.batch, 0, l.state, 1);
|
||||
}
|
||||
|
||||
s.input = l.state;
|
||||
s.delta = self_layer.delta - l.hidden*l.batch;
|
||||
if (i == 0) s.delta = 0;
|
||||
backward_connected_layer(self_layer, s);
|
||||
|
||||
copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1);
|
||||
s.input = state.input + i*l.inputs*l.batch;
|
||||
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
|
||||
else s.delta = 0;
|
||||
backward_connected_layer(input_layer, s);
|
||||
|
||||
input_layer.output -= l.hidden*l.batch;
|
||||
input_layer.delta -= l.hidden*l.batch;
|
||||
|
||||
self_layer.output -= l.hidden*l.batch;
|
||||
self_layer.delta -= l.hidden*l.batch;
|
||||
|
||||
output_layer.output -= l.outputs*l.batch;
|
||||
output_layer.delta -= l.outputs*l.batch;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_rnn_layer(layer l)
|
||||
{
|
||||
pull_connected_layer(*(l.input_layer));
|
||||
pull_connected_layer(*(l.self_layer));
|
||||
pull_connected_layer(*(l.output_layer));
|
||||
}
|
||||
|
||||
void push_rnn_layer(layer l)
|
||||
{
|
||||
push_connected_layer(*(l.input_layer));
|
||||
push_connected_layer(*(l.self_layer));
|
||||
push_connected_layer(*(l.output_layer));
|
||||
}
|
||||
|
||||
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
}
|
||||
|
||||
void forward_rnn_layer_gpu(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
layer output_layer = *(l.output_layer);
|
||||
|
||||
fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1);
|
||||
fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1);
|
||||
fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1);
|
||||
if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
|
||||
|
||||
for (i = 0; i < l.steps; ++i) {
|
||||
s.input = state.input;
|
||||
forward_connected_layer_gpu(input_layer, s);
|
||||
|
||||
s.input = l.state_gpu;
|
||||
forward_connected_layer_gpu(self_layer, s);
|
||||
|
||||
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
|
||||
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
|
||||
|
||||
forward_connected_layer_gpu(output_layer, s);
|
||||
|
||||
state.input += l.inputs*l.batch;
|
||||
input_layer.output_gpu += l.hidden*l.batch;
|
||||
input_layer.x_gpu += l.hidden*l.batch;
|
||||
input_layer.x_norm_gpu += l.hidden*l.batch;
|
||||
|
||||
self_layer.output_gpu += l.hidden*l.batch;
|
||||
self_layer.x_gpu += l.hidden*l.batch;
|
||||
self_layer.x_norm_gpu += l.hidden*l.batch;
|
||||
|
||||
output_layer.output_gpu += l.outputs*l.batch;
|
||||
output_layer.x_gpu += l.outputs*l.batch;
|
||||
output_layer.x_norm_gpu += l.outputs*l.batch;
|
||||
}
|
||||
}
|
||||
|
||||
void backward_rnn_layer_gpu(layer l, network_state state)
|
||||
{
|
||||
network_state s = {0};
|
||||
s.train = state.train;
|
||||
int i;
|
||||
layer input_layer = *(l.input_layer);
|
||||
layer self_layer = *(l.self_layer);
|
||||
layer output_layer = *(l.output_layer);
|
||||
input_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
input_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
input_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
input_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
|
||||
self_layer.output_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
self_layer.delta_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
self_layer.x_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
self_layer.x_norm_gpu += l.hidden*l.batch*(l.steps-1);
|
||||
|
||||
output_layer.output_gpu += l.outputs*l.batch*(l.steps-1);
|
||||
output_layer.delta_gpu += l.outputs*l.batch*(l.steps-1);
|
||||
output_layer.x_gpu += l.outputs*l.batch*(l.steps-1);
|
||||
output_layer.x_norm_gpu += l.outputs*l.batch*(l.steps-1);
|
||||
for (i = l.steps-1; i >= 0; --i) {
|
||||
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu, 1, l.state_gpu, 1);
|
||||
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1);
|
||||
|
||||
s.input = l.state_gpu;
|
||||
s.delta = self_layer.delta_gpu;
|
||||
backward_connected_layer_gpu(output_layer, s);
|
||||
|
||||
if(i > 0){
|
||||
copy_ongpu(l.hidden * l.batch, input_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
|
||||
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu - l.hidden*l.batch, 1, l.state_gpu, 1);
|
||||
}else{
|
||||
fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1);
|
||||
}
|
||||
|
||||
s.input = l.state_gpu;
|
||||
s.delta = self_layer.delta_gpu - l.hidden*l.batch;
|
||||
if (i == 0) s.delta = 0;
|
||||
backward_connected_layer_gpu(self_layer, s);
|
||||
|
||||
copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1);
|
||||
s.input = state.input + i*l.inputs*l.batch;
|
||||
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch;
|
||||
else s.delta = 0;
|
||||
backward_connected_layer_gpu(input_layer, s);
|
||||
|
||||
input_layer.output_gpu -= l.hidden*l.batch;
|
||||
input_layer.delta_gpu -= l.hidden*l.batch;
|
||||
input_layer.x_gpu -= l.hidden*l.batch;
|
||||
input_layer.x_norm_gpu -= l.hidden*l.batch;
|
||||
|
||||
self_layer.output_gpu -= l.hidden*l.batch;
|
||||
self_layer.delta_gpu -= l.hidden*l.batch;
|
||||
self_layer.x_gpu -= l.hidden*l.batch;
|
||||
self_layer.x_norm_gpu -= l.hidden*l.batch;
|
||||
|
||||
output_layer.output_gpu -= l.outputs*l.batch;
|
||||
output_layer.delta_gpu -= l.outputs*l.batch;
|
||||
output_layer.x_gpu -= l.outputs*l.batch;
|
||||
output_layer.x_norm_gpu -= l.outputs*l.batch;
|
||||
}
|
||||
}
|
||||
#endif
|
24
src/rnn_layer.h
Normal file
24
src/rnn_layer.h
Normal file
@ -0,0 +1,24 @@
|
||||
|
||||
#ifndef RNN_LAYER_H
|
||||
#define RNN_LAYER_H
|
||||
|
||||
#include "activations.h"
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize);
|
||||
|
||||
void forward_rnn_layer(layer l, network_state state);
|
||||
void backward_rnn_layer(layer l, network_state state);
|
||||
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_rnn_layer_gpu(layer l, network_state state);
|
||||
void backward_rnn_layer_gpu(layer l, network_state state);
|
||||
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void push_rnn_layer(layer l);
|
||||
void pull_rnn_layer(layer l);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -26,7 +26,7 @@ softmax_layer make_softmax_layer(int batch, int inputs, int groups)
|
||||
return l;
|
||||
}
|
||||
|
||||
void softmax_array(float *input, int n, float *output)
|
||||
void softmax_array(float *input, int n, float temp, float *output)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
@ -35,12 +35,12 @@ void softmax_array(float *input, int n, float *output)
|
||||
if(input[i] > largest) largest = input[i];
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i]-largest);
|
||||
sum += exp(input[i]/temp-largest/temp);
|
||||
}
|
||||
if(sum) sum = largest+log(sum);
|
||||
if(sum) sum = largest/temp+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i] = exp(input[i]-sum);
|
||||
output[i] = exp(input[i]/temp-sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -50,7 +50,7 @@ void forward_softmax_layer(const softmax_layer l, network_state state)
|
||||
int inputs = l.inputs / l.groups;
|
||||
int batch = l.batch * l.groups;
|
||||
for(b = 0; b < batch; ++b){
|
||||
softmax_array(state.input+b*inputs, inputs, l.output+b*inputs);
|
||||
softmax_array(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,12 +1,11 @@
|
||||
#ifndef SOFTMAX_LAYER_H
|
||||
#define SOFTMAX_LAYER_H
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
typedef layer softmax_layer;
|
||||
|
||||
void softmax_array(float *input, int n, float *output);
|
||||
void softmax_array(float *input, int n, float temp, float *output);
|
||||
softmax_layer make_softmax_layer(int batch, int inputs, int groups);
|
||||
void forward_softmax_layer(const softmax_layer l, network_state state);
|
||||
void backward_softmax_layer(const softmax_layer l, network_state state);
|
||||
|
@ -8,7 +8,7 @@ extern "C" {
|
||||
#include "blas.h"
|
||||
}
|
||||
|
||||
__global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float *output)
|
||||
__global__ void forward_softmax_layer_kernel(int n, int batch, float *input, float temp, float *output)
|
||||
{
|
||||
int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if(b >= batch) return;
|
||||
@ -21,11 +21,11 @@ __global__ void forward_softmax_layer_kernel(int n, int batch, float *input, flo
|
||||
largest = (val>largest) ? val : largest;
|
||||
}
|
||||
for(i = 0; i < n; ++i){
|
||||
sum += exp(input[i+b*n]-largest);
|
||||
sum += exp(input[i+b*n]/temp-largest/temp);
|
||||
}
|
||||
sum = (sum != 0) ? largest+log(sum) : largest-100;
|
||||
sum = (sum != 0) ? largest/temp+log(sum) : largest-100;
|
||||
for(i = 0; i < n; ++i){
|
||||
output[i+b*n] = exp(input[i+b*n]-sum);
|
||||
output[i+b*n] = exp(input[i+b*n]/temp-sum);
|
||||
}
|
||||
}
|
||||
|
||||
@ -38,7 +38,7 @@ extern "C" void forward_softmax_layer_gpu(const softmax_layer layer, network_sta
|
||||
{
|
||||
int inputs = layer.inputs / layer.groups;
|
||||
int batch = layer.batch * layer.groups;
|
||||
forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.output_gpu);
|
||||
forward_softmax_layer_kernel<<<cuda_gridsize(batch), BLOCK>>>(inputs, batch, state.input, layer.temperature, layer.output_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
|
@ -127,14 +127,13 @@ void pm(int M, int N, float *A)
|
||||
for(i =0 ; i < M; ++i){
|
||||
printf("%d ", i+1);
|
||||
for(j = 0; j < N; ++j){
|
||||
printf("%10.6f, ", A[i*N+j]);
|
||||
printf("%2.4f, ", A[i*N+j]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
char *find_replace(char *str, char *orig, char *rep)
|
||||
{
|
||||
static char buffer[4096];
|
||||
|
@ -343,8 +343,10 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
//draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, 0, 20);
|
||||
show_image(im, "predictions");
|
||||
save_image(im, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
free_image(im);
|
||||
|
Loading…
x
Reference in New Issue
Block a user