mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
201 lines
6.6 KiB
C
201 lines
6.6 KiB
C
|
#include "network.h"
|
||
|
#include "utils.h"
|
||
|
#include "parser.h"
|
||
|
|
||
|
|
||
|
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
||
|
#define AMNT 3
|
||
|
void draw_detection(image im, float *box, int side)
|
||
|
{
|
||
|
int classes = 20;
|
||
|
int elems = 4+classes;
|
||
|
int j;
|
||
|
int r, c;
|
||
|
|
||
|
for(r = 0; r < side; ++r){
|
||
|
for(c = 0; c < side; ++c){
|
||
|
j = (r*side + c) * elems;
|
||
|
//printf("%d\n", j);
|
||
|
//printf("Prob: %f\n", box[j]);
|
||
|
int class = max_index(box+j, classes);
|
||
|
if(box[j+class] > .02 || 1){
|
||
|
//int z;
|
||
|
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
|
||
|
printf("%f %s\n", box[j+class], class_names[class]);
|
||
|
float red = get_color(0,class,classes);
|
||
|
float green = get_color(1,class,classes);
|
||
|
float blue = get_color(2,class,classes);
|
||
|
|
||
|
j += classes;
|
||
|
int d = im.w/side;
|
||
|
int y = r*d+box[j]*d;
|
||
|
int x = c*d+box[j+1]*d;
|
||
|
int h = box[j+2]*im.h;
|
||
|
int w = box[j+3]*im.w;
|
||
|
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
//printf("Done\n");
|
||
|
show_image(im, "box");
|
||
|
cvWaitKey(0);
|
||
|
}
|
||
|
|
||
|
void train_detection(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
char *base = basecfg(cfgfile);
|
||
|
printf("%s\n", base);
|
||
|
float avg_loss = 1;
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||
|
int imgs = 128;
|
||
|
srand(time(0));
|
||
|
//srand(23410);
|
||
|
int i = net.seen/imgs;
|
||
|
list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
|
||
|
char **paths = (char **)list_to_array(plist);
|
||
|
printf("%d\n", plist->size);
|
||
|
data train, buffer;
|
||
|
int im_dim = 512;
|
||
|
int jitter = 64;
|
||
|
int classes = 21;
|
||
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
|
||
|
clock_t time;
|
||
|
while(1){
|
||
|
i += 1;
|
||
|
time=clock();
|
||
|
pthread_join(load_thread, 0);
|
||
|
train = buffer;
|
||
|
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
|
||
|
|
||
|
/*
|
||
|
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
|
||
|
draw_detection(im, train.y.vals[0], 7);
|
||
|
show_image(im, "truth");
|
||
|
cvWaitKey(0);
|
||
|
*/
|
||
|
|
||
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||
|
time=clock();
|
||
|
float loss = train_network(net, train);
|
||
|
net.seen += imgs;
|
||
|
avg_loss = avg_loss*.9 + loss*.1;
|
||
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||
|
if(i%100==0){
|
||
|
char buff[256];
|
||
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
free_data(train);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void validate_detection(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||
|
srand(time(0));
|
||
|
|
||
|
list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
|
||
|
char **paths = (char **)list_to_array(plist);
|
||
|
int num_output = 1225;
|
||
|
int im_size = 448;
|
||
|
int classes = 21;
|
||
|
|
||
|
int m = plist->size;
|
||
|
int i = 0;
|
||
|
int splits = 100;
|
||
|
int num = (i+1)*m/splits - i*m/splits;
|
||
|
|
||
|
fprintf(stderr, "%d\n", m);
|
||
|
data val, buffer;
|
||
|
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
|
||
|
clock_t time;
|
||
|
for(i = 1; i <= splits; ++i){
|
||
|
time=clock();
|
||
|
pthread_join(load_thread, 0);
|
||
|
val = buffer;
|
||
|
|
||
|
num = (i+1)*m/splits - i*m/splits;
|
||
|
char **part = paths+(i*m/splits);
|
||
|
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
|
||
|
|
||
|
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
|
||
|
matrix pred = network_predict_data(net, val);
|
||
|
int j, k, class;
|
||
|
for(j = 0; j < pred.rows; ++j){
|
||
|
for(k = 0; k < pred.cols; k += classes+4){
|
||
|
|
||
|
/*
|
||
|
int z;
|
||
|
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
|
||
|
printf("\n");
|
||
|
*/
|
||
|
|
||
|
//if (pred.vals[j][k] > .001){
|
||
|
for(class = 0; class < classes-1; ++class){
|
||
|
int index = (k)/(classes+4);
|
||
|
int r = index/7;
|
||
|
int c = index%7;
|
||
|
float y = (r + pred.vals[j][k+0+classes])/7.;
|
||
|
float x = (c + pred.vals[j][k+1+classes])/7.;
|
||
|
float h = pred.vals[j][k+2+classes];
|
||
|
float w = pred.vals[j][k+3+classes];
|
||
|
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
|
||
|
}
|
||
|
//}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
time=clock();
|
||
|
free_data(val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_detection(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
int im_size = 448;
|
||
|
set_batch_network(&net, 1);
|
||
|
srand(2222222);
|
||
|
clock_t time;
|
||
|
char filename[256];
|
||
|
while(1){
|
||
|
fgets(filename, 256, stdin);
|
||
|
strtok(filename, "\n");
|
||
|
image im = load_image_color(filename, im_size, im_size);
|
||
|
translate_image(im, -128);
|
||
|
scale_image(im, 1/128.);
|
||
|
printf("%d %d %d\n", im.h, im.w, im.c);
|
||
|
float *X = im.data;
|
||
|
time=clock();
|
||
|
float *predictions = network_predict(net, X);
|
||
|
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
|
||
|
draw_detection(im, predictions, 7);
|
||
|
free_image(im);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void run_detection(int argc, char **argv)
|
||
|
{
|
||
|
if(argc < 4){
|
||
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
char *cfg = argv[3];
|
||
|
char *weights = (argc > 4) ? argv[4] : 0;
|
||
|
if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
|
||
|
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
|
||
|
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
|
||
|
}
|