Split commands into different files

This commit is contained in:
Joseph Redmon 2015-03-06 10:49:03 -08:00
parent 26cddc6f93
commit 2313a8eb54
8 changed files with 887 additions and 870 deletions

View File

@ -25,7 +25,7 @@ CFLAGS+=-DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif

120
src/captcha.c Normal file
View File

@ -0,0 +1,120 @@
#include "network.h"
#include "utils.h"
#include "parser.h"
void train_captcha(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
list *plist = get_paths("/data/captcha/train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
++i;
time=clock();
data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
translate_data_rows(train, -128);
scale_data_rows(train, 1./128);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_captcha(char *cfgfile, char *weightfile)
{
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int imgs = 1000;
int numchars = 37;
list *plist = get_paths("/data/captcha/valid.base");
char **paths = (char **)list_to_array(plist);
data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
translate_data_rows(valid, -128);
scale_data_rows(valid, 1./128);
matrix pred = network_predict_data(net, valid);
int i, k;
int correct = 0;
int total = 0;
int accuracy = 0;
for(i = 0; i < imgs; ++i){
int allcorrect = 1;
for(k = 0; k < 10; ++k){
char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
if (truth != prediction) allcorrect=0;
if (truth != '.' && truth == prediction) ++correct;
if (truth != '.' || truth != prediction) ++total;
}
accuracy += allcorrect;
}
printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
free_data(valid);
}
void test_captcha(char *cfgfile, char *weightfile)
{
setbuf(stdout, NULL);
srand(time(0));
//char *base = basecfg(cfgfile);
//printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
if(weightfile){
load_weights(&net, weightfile);
}
char filename[256];
while(1){
//printf("Enter filename: ");
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 60, 200);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
float *predictions = network_predict(net, X);
print_letters(predictions, 10);
free_image(im);
}
}
void run_captcha(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "test")) test_captcha(cfg, weights);
else if(0==strcmp(argv[2], "train")) train_captcha(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_captcha(cfg, weights);
}

View File

@ -1,246 +1,17 @@
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
#include "data.h"
#include "matrix.h"
#include "utils.h"
#include "blas.h"
#include "matrix.h"
#include "server.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include "parser.h"
#include "utils.h"
#include "cuda.h"
#define _GNU_SOURCE
#include <fenv.h>
void test_load()
{
image dog = load_image("dog.jpg", 300, 400);
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_parser()
{
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
save_network(net, "cfg/trained_imagenet_smaller.cfg");
}
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
#define AMNT 3
void draw_detection(image im, float *box, int side)
{
int classes = 20;
int elems = 4+classes;
int j;
int r, c;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
//printf("%d\n", j);
//printf("Prob: %f\n", box[j]);
int class = max_index(box+j, classes);
if(box[j+class] > .02 || 1){
//int z;
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
printf("%f %s\n", box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
j += classes;
int d = im.w/side;
int y = r*d+box[j]*d;
int x = c*d+box[j+1]*d;
int h = box[j+2]*im.h;
int w = box[j+3]*im.w;
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
}
}
}
//printf("Done\n");
show_image(im, "box");
cvWaitKey(0);
}
char *basename(char *cfgfile)
{
char *c = cfgfile;
char *next;
while((next = strchr(c, '/')))
{
c = next+1;
}
c = copy_string(c);
next = strchr(c, '_');
if (next) *next = 0;
next = strchr(c, '.');
if (next) *next = 0;
return c;
}
void train_detection_net(char *cfgfile, char *weightfile)
{
char *base = basename(cfgfile);
printf("%s\n", base);
float avg_loss = 1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
srand(time(0));
//srand(23410);
int i = net.seen/imgs;
list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
data train, buffer;
int im_dim = 512;
int jitter = 64;
int classes = 21;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
/*
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
draw_detection(im, train.y.vals[0], 7);
show_image(im, "truth");
cvWaitKey(0);
*/
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
free_data(train);
}
}
void validate_detection_net(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
char **paths = (char **)list_to_array(plist);
int num_output = 1225;
int im_size = 448;
int classes = 21;
int m = plist->size;
int i = 0;
int splits = 100;
int num = (i+1)*m/splits - i*m/splits;
fprintf(stderr, "%d\n", m);
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
clock_t time;
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
matrix pred = network_predict_data(net, val);
int j, k, class;
for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += classes+4){
/*
int z;
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
printf("\n");
*/
//if (pred.vals[j][k] > .001){
for(class = 0; class < classes-1; ++class){
int index = (k)/(classes+4);
int r = index/7;
int c = index%7;
float y = (r + pred.vals[j][k+0+classes])/7.;
float x = (c + pred.vals[j][k+1+classes])/7.;
float h = pred.vals[j][k+2+classes];
float w = pred.vals[j][k+3+classes];
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
}
//}
}
}
time=clock();
free_data(val);
}
}
/*
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_learning_network(&net, 0, 1, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
data train, buffer;
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
while(1){
i += 1;
time=clock();
client_update(net, address);
printf("Updated: %lf seconds\n", sec(clock()-time));
time=clock();
pthread_join(load_thread, 0);
train = buffer;
normalize_data_rows(train);
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
free_data(train);
}
}
*/
extern void run_imagenet(int argc, char **argv);
extern void run_detection(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
void convert(char *cfgfile, char *outfile, char *weightfile)
{
@ -251,602 +22,6 @@ void convert(char *cfgfile, char *outfile, char *weightfile)
save_network(net, outfile);
}
void train_captcha(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
srand(time(0));
char *base = basename(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
list *plist = get_paths("/data/captcha/train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
++i;
time=clock();
data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
translate_data_rows(train, -128);
scale_data_rows(train, 1./128);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_captcha(char *cfgfile, char *weightfile)
{
srand(time(0));
char *base = basename(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int imgs = 1000;
int numchars = 37;
list *plist = get_paths("/data/captcha/valid.base");
char **paths = (char **)list_to_array(plist);
data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
translate_data_rows(valid, -128);
scale_data_rows(valid, 1./128);
matrix pred = network_predict_data(net, valid);
int i, k;
int correct = 0;
int total = 0;
int accuracy = 0;
for(i = 0; i < imgs; ++i){
int allcorrect = 1;
for(k = 0; k < 10; ++k){
char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
if (truth != prediction) allcorrect=0;
if (truth != '.' && truth == prediction) ++correct;
if (truth != '.' || truth != prediction) ++total;
}
accuracy += allcorrect;
}
printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
free_data(valid);
}
void test_captcha(char *cfgfile, char *weightfile)
{
setbuf(stdout, NULL);
srand(time(0));
char *base = basename(cfgfile);
//printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
if(weightfile){
load_weights(&net, weightfile);
}
clock_t time;
char filename[256];
while(1){
//printf("Enter filename: ");
fgets(filename, 256, stdin);
strtok(filename, "\n");
time = clock();
image im = load_image_color(filename, 60, 200);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
//printf("Predicted in %f\n", sec(clock() - time));
print_letters(predictions, 10);
free_image(im);
}
}
void train_imagenet(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
srand(time(0));
char *base = basename(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
while(1){
++i;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_imagenet(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
list *plist = get_paths("/data/imagenet/cls.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_top5 = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val);
avg_acc += acc[0];
avg_top5 += acc[1];
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
void test_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char filename[256];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, im_size, im_size);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
draw_detection(im, predictions, 7);
free_image(im);
}
}
void test_init(char *cfgfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char *filename = "data/test.jpg";
image im = load_image_color(filename, 256, 256);
//z_normalize_image(im);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
forward_network(net, X, 0, 1);
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
int size = output.h*output.w*output.c;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
int size = layer.outputs;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
}
}
free_image(im);
}
void test_dog(char *cfgfile)
{
image im = load_image_color("data/dog.jpg", 256, 256);
translate_image(im, -128);
print_image(im);
float *X = im.data;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
network_predict(net, X);
image crop = get_network_image_layer(net, 0);
show_image(crop, "cropped");
print_image(crop);
show_image(im, "orig");
float * inter = get_network_output(net);
pm(1000, 1, inter);
cvWaitKey(0);
}
void test_voc_segment(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
while(1){
char filename[256];
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 500, 500);
//resize_network(net, im.h, im.w, im.c);
translate_image(im, -128);
scale_image(im, 1/128.);
//float *predictions = network_predict(net, im.data);
network_predict(net, im.data);
free_image(im);
image output = get_network_image_layer(net, net.n-2);
show_image(output, "Segment Output");
cvWaitKey(0);
}
}
void test_imagenet(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
//imgs=1;
srand(2222222);
int i = 0;
char **names = get_labels("cfg/shortnames.txt");
clock_t time;
char filename[256];
int indexes[10];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 256, 256);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
}
}
void test_visualize(char *filename)
{
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
}
void test_cifar10(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
clock_t start = clock(), end;
float test_acc = network_accuracy_multi(net, test, 10);
end = clock();
printf("%f in %f Sec\n", test_acc, sec(end-start));
//visualize_network(net);
//cvWaitKey(0);
}
void train_cifar10(char *cfgfile)
{
srand(555555);
srand(time(0));
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
int count = 0;
int iters = 50000/net.batch;
data train = load_all_cifar10();
while(++count <= 10000){
clock_t time = clock();
float loss = train_network_sgd(net, train, iters);
if(count%10 == 0){
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
save_network(net, buff);
}else{
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
}
}
free_data(train);
}
void compare_nist(char *p1,char *p2)
{
srand(222222);
network n1 = parse_network_cfg(p1);
network n2 = parse_network_cfg(p2);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
compare_networks(n1, n2, test);
}
void test_nist(char *path)
{
srand(222222);
network net = parse_network_cfg(path);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
clock_t start = clock(), end;
float test_acc = network_accuracy(net, test);
end = clock();
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
void train_nist(char *cfgfile)
{
srand(222222);
// srand(time(0));
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
network net = parse_network_cfg(cfgfile);
int count = 0;
int iters = 6000/net.batch + 1;
while(++count <= 100){
clock_t start = clock(), end;
normalize_data_rows(train);
normalize_data_rows(test);
float loss = train_network_sgd(net, train, iters);
float test_acc = 0;
if(count%1 == 0) test_acc = network_accuracy(net, test);
end = clock();
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
free_data(train);
free_data(test);
char buff[256];
sprintf(buff, "%s.trained", cfgfile);
save_network(net, buff);
}
/*
void train_nist_distributed(char *address)
{
srand(time(0));
network net = parse_network_cfg("cfg/nist.client");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
//normalize_data_rows(test);
int count = 0;
int iters = 50000/net.batch;
iters = 1000/net.batch + 1;
while(++count <= 2000){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
client_update(net, address);
end = clock();
//float test_acc = network_accuracy_gpu(net, test);
//float test_acc = 0;
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
}
}
*/
void test_ensemble()
{
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
network net = parse_network_cfg("nist.cfg");
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows);
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
lr /= 2;
}
matrix partial = network_predict_data(net, test);
float acc = matrix_topk_accuracy(test.y, partial,1);
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
float acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Full Ensemble Accuracy: %lf\n", acc);
}
void visualize_cat()
{
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
image im = load_image_color("data/cat.png", 0, 0);
printf("Processing %dx%d image\n", im.h, im.w);
resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data, 0, 0);
visualize_network(net);
cvWaitKey(0);
}
void test_correct_nist()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
int count = 0;
int iters = 1000/net.batch;
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_gpu.cfg");
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_cpu.cfg");
}
void test_correct_alexnet()
{
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
int count = 0;
network net;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
int imgs = net.batch;
count = 0;
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
}
/*
void run_server()
{
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_batch_network(&net, 1);
server_update(net);
}
void test_client()
{
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
}
*/
void del_arg(int argc, char **argv, int index)
{
int i;
@ -914,44 +89,13 @@ int main(int argc, char **argv)
}
#endif
if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist();
//else if(0==strcmp(argv[1], "server")) run_server();
#ifdef GPU
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
#endif
else if(argc < 3){
fprintf(stderr, "usage: %s <function> <filename>\n", argv[0]);
return 0;
if(0==strcmp(argv[1], "imagenet")){
run_imagenet(argc, argv);
} else if (0 == strcmp(argv[1], "detection")){
run_detection(argc, argv);
} else if (0 == strcmp(argv[1], "captcha")){
run_captcha(argc, argv);
}
else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]);
else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]);
else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]);
else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]);
else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]);
else if(0==strcmp(argv[1], "train")) train_imagenet(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "captcha")) train_captcha(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "tcaptcha")) test_captcha(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "vcaptcha")) validate_captcha(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "testseg")) test_voc_segment(argv[2], (argc > 3)? argv[3] : 0);
//else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
else if(0==strcmp(argv[1], "detect")) test_detection(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "init")) test_init(argv[2]);
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2], (argc > 3)? argv[3] : 0);
else if(0==strcmp(argv[1], "testnist")) test_nist(argv[2]);
else if(0==strcmp(argv[1], "validetect")) validate_detection_net(argv[2], (argc > 3)? argv[3] : 0);
else if(argc < 4){
fprintf(stderr, "usage: %s <function> <filename> <filename>\n", argv[0]);
return 0;
}
else if(0==strcmp(argv[1], "compare")) compare_nist(argv[2], argv[3]);
else if(0==strcmp(argv[1], "convert")) convert(argv[2], argv[3], (argc > 4)? argv[4] : 0);
else if(0==strcmp(argv[1], "scale")) scale_rate(argv[2], atof(argv[3]));
fprintf(stderr, "Success!\n");
return 0;
}

200
src/detection.c Normal file
View File

@ -0,0 +1,200 @@
#include "network.h"
#include "utils.h"
#include "parser.h"
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
#define AMNT 3
void draw_detection(image im, float *box, int side)
{
int classes = 20;
int elems = 4+classes;
int j;
int r, c;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
//printf("%d\n", j);
//printf("Prob: %f\n", box[j]);
int class = max_index(box+j, classes);
if(box[j+class] > .02 || 1){
//int z;
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
printf("%f %s\n", box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
j += classes;
int d = im.w/side;
int y = r*d+box[j]*d;
int x = c*d+box[j+1]*d;
int h = box[j+2]*im.h;
int w = box[j+3]*im.w;
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
}
}
}
//printf("Done\n");
show_image(im, "box");
cvWaitKey(0);
}
void train_detection(char *cfgfile, char *weightfile)
{
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = 1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
srand(time(0));
//srand(23410);
int i = net.seen/imgs;
list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
data train, buffer;
int im_dim = 512;
int jitter = 64;
int classes = 21;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
/*
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
draw_detection(im, train.y.vals[0], 7);
show_image(im, "truth");
cvWaitKey(0);
*/
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
free_data(train);
}
}
void validate_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
char **paths = (char **)list_to_array(plist);
int num_output = 1225;
int im_size = 448;
int classes = 21;
int m = plist->size;
int i = 0;
int splits = 100;
int num = (i+1)*m/splits - i*m/splits;
fprintf(stderr, "%d\n", m);
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
clock_t time;
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
matrix pred = network_predict_data(net, val);
int j, k, class;
for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += classes+4){
/*
int z;
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
printf("\n");
*/
//if (pred.vals[j][k] > .001){
for(class = 0; class < classes-1; ++class){
int index = (k)/(classes+4);
int r = index/7;
int c = index%7;
float y = (r + pred.vals[j][k+0+classes])/7.;
float x = (c + pred.vals[j][k+1+classes])/7.;
float h = pred.vals[j][k+2+classes];
float w = pred.vals[j][k+3+classes];
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
}
//}
}
}
time=clock();
free_data(val);
}
}
void test_detection(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char filename[256];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, im_size, im_size);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
draw_detection(im, predictions, 7);
free_image(im);
}
}
void run_detection(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
}

180
src/imagenet.c Normal file
View File

@ -0,0 +1,180 @@
#include "network.h"
#include "utils.h"
#include "parser.h"
void train_imagenet(char *cfgfile, char *weightfile)
{
float avg_loss = -1;
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024;
int i = net.seen/imgs;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
pthread_t load_thread;
data train;
data buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
while(1){
++i;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
net.seen += imgs;
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
free_data(train);
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
}
}
}
void validate_imagenet(char *filename, char *weightfile)
{
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
}
srand(time(0));
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
list *plist = get_paths("/data/imagenet/cls.val.list");
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_top5 = 0;
int splits = 50;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
pthread_t load_thread = load_data_thread(paths, num, 0, labels, 1000, 256, 256, &buffer);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, labels, 1000, 256, 256, &buffer);
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val);
avg_acc += acc[0];
avg_top5 += acc[1];
printf("%d: top1: %f, top5: %f, %lf seconds, %d images\n", i, avg_acc/i, avg_top5/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
void test_imagenet(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
//imgs=1;
srand(2222222);
int i = 0;
char **names = get_labels("cfg/shortnames.txt");
clock_t time;
char filename[256];
int indexes[10];
while(1){
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 256, 256);
translate_image(im, -128);
scale_image(im, 1/128.);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
top_predictions(net, 10, indexes);
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
for(i = 0; i < 10; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
}
}
void run_imagenet(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
if(0==strcmp(argv[2], "test")) test_imagenet(cfg, weights);
else if(0==strcmp(argv[2], "train")) train_imagenet(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_imagenet(cfg, weights);
}
/*
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_learning_network(&net, 0, 1, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
data train, buffer;
pthread_t load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
while(1){
i += 1;
time=clock();
client_update(net, address);
printf("Updated: %lf seconds\n", sec(clock()-time));
time=clock();
pthread_join(load_thread, 0);
train = buffer;
normalize_data_rows(train);
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 224, 224, &buffer);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
free_data(train);
}
}
*/

356
src/old.c Normal file
View File

@ -0,0 +1,356 @@
void test_load()
{
image dog = load_image("dog.jpg", 300, 400);
show_image(dog, "Test Load");
show_image_layers(dog, "Test Load");
}
void test_parser()
{
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
save_network(net, "cfg/trained_imagenet_smaller.cfg");
}
void test_init(char *cfgfile)
{
gpu_index = -1;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
srand(2222222);
int i = 0;
char *filename = "data/test.jpg";
image im = load_image_color(filename, 256, 256);
//z_normalize_image(im);
translate_image(im, -128);
scale_image(im, 1/128.);
float *X = im.data;
forward_network(net, X, 0, 1);
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
image output = get_convolutional_image(layer);
int size = output.h*output.w*output.c;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
int size = layer.outputs;
float v = variance_array(layer.output, size);
float m = mean_array(layer.output, size);
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
}
}
free_image(im);
}
void test_dog(char *cfgfile)
{
image im = load_image_color("data/dog.jpg", 256, 256);
translate_image(im, -128);
print_image(im);
float *X = im.data;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, 1);
network_predict(net, X);
image crop = get_network_image_layer(net, 0);
show_image(crop, "cropped");
print_image(crop);
show_image(im, "orig");
float * inter = get_network_output(net);
pm(1000, 1, inter);
cvWaitKey(0);
}
void test_voc_segment(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
while(1){
char filename[256];
fgets(filename, 256, stdin);
strtok(filename, "\n");
image im = load_image_color(filename, 500, 500);
//resize_network(net, im.h, im.w, im.c);
translate_image(im, -128);
scale_image(im, 1/128.);
//float *predictions = network_predict(net, im.data);
network_predict(net, im.data);
free_image(im);
image output = get_network_image_layer(net, net.n-2);
show_image(output, "Segment Output");
cvWaitKey(0);
}
}
void test_visualize(char *filename)
{
network net = parse_network_cfg(filename);
visualize_network(net);
cvWaitKey(0);
}
void test_cifar10(char *cfgfile)
{
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
clock_t start = clock(), end;
float test_acc = network_accuracy_multi(net, test, 10);
end = clock();
printf("%f in %f Sec\n", test_acc, sec(end-start));
//visualize_network(net);
//cvWaitKey(0);
}
void train_cifar10(char *cfgfile)
{
srand(555555);
srand(time(0));
network net = parse_network_cfg(cfgfile);
data test = load_cifar10_data("data/cifar10/test_batch.bin");
int count = 0;
int iters = 50000/net.batch;
data train = load_all_cifar10();
while(++count <= 10000){
clock_t time = clock();
float loss = train_network_sgd(net, train, iters);
if(count%10 == 0){
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
save_network(net, buff);
}else{
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
}
}
free_data(train);
}
void compare_nist(char *p1,char *p2)
{
srand(222222);
network n1 = parse_network_cfg(p1);
network n2 = parse_network_cfg(p2);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
compare_networks(n1, n2, test);
}
void test_nist(char *path)
{
srand(222222);
network net = parse_network_cfg(path);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(test);
clock_t start = clock(), end;
float test_acc = network_accuracy(net, test);
end = clock();
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
void train_nist(char *cfgfile)
{
srand(222222);
// srand(time(0));
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
network net = parse_network_cfg(cfgfile);
int count = 0;
int iters = 6000/net.batch + 1;
while(++count <= 100){
clock_t start = clock(), end;
normalize_data_rows(train);
normalize_data_rows(test);
float loss = train_network_sgd(net, train, iters);
float test_acc = 0;
if(count%1 == 0) test_acc = network_accuracy(net, test);
end = clock();
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
free_data(train);
free_data(test);
char buff[256];
sprintf(buff, "%s.trained", cfgfile);
save_network(net, buff);
}
/*
void train_nist_distributed(char *address)
{
srand(time(0));
network net = parse_network_cfg("cfg/nist.client");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
//normalize_data_rows(test);
int count = 0;
int iters = 50000/net.batch;
iters = 1000/net.batch + 1;
while(++count <= 2000){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
client_update(net, address);
end = clock();
//float test_acc = network_accuracy_gpu(net, test);
//float test_acc = 0;
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
}
}
*/
void test_ensemble()
{
int i;
srand(888888);
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
normalize_data_rows(d);
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
normalize_data_rows(test);
data train = d;
// data *split = split_data(d, 1, 10);
// data train = split[0];
// data test = split[1];
matrix prediction = make_matrix(test.y.rows, test.y.cols);
int n = 30;
for(i = 0; i < n; ++i){
int count = 0;
float lr = .0005;
float momentum = .9;
float decay = .01;
network net = parse_network_cfg("nist.cfg");
while(++count <= 15){
float acc = train_network_sgd(net, train, train.X.rows);
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
lr /= 2;
}
matrix partial = network_predict_data(net, test);
float acc = matrix_topk_accuracy(test.y, partial,1);
printf("Model Accuracy: %lf\n", acc);
matrix_add_matrix(partial, prediction);
acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Current Ensemble Accuracy: %lf\n", acc);
free_matrix(partial);
}
float acc = matrix_topk_accuracy(test.y, prediction,1);
printf("Full Ensemble Accuracy: %lf\n", acc);
}
void visualize_cat()
{
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
image im = load_image_color("data/cat.png", 0, 0);
printf("Processing %dx%d image\n", im.h, im.w);
resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data, 0, 0);
visualize_network(net);
cvWaitKey(0);
}
void test_correct_nist()
{
network net = parse_network_cfg("cfg/nist_conv.cfg");
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train);
normalize_data_rows(test);
int count = 0;
int iters = 1000/net.batch;
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_gpu.cfg");
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist_conv.cfg");
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
save_network(net, "cfg/nist_cpu.cfg");
}
void test_correct_alexnet()
{
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
int count = 0;
network net;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
int imgs = net.batch;
count = 0;
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
gpu_index = -1;
count = 0;
srand(222222);
net = parse_network_cfg("cfg/net.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
while(++count <= 5){
time=clock();
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
free_data(train);
}
}
/*
void run_server()
{
srand(time(0));
network net = parse_network_cfg("cfg/net.cfg");
set_batch_network(&net, 1);
server_update(net);
}
void test_client()
{
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
}
*/

View File

@ -9,6 +9,22 @@
#include "utils.h"
char *basecfg(char *cfgfile)
{
char *c = cfgfile;
char *next;
while((next = strchr(c, '/')))
{
c = next+1;
}
c = copy_string(c);
next = strchr(c, '_');
if (next) *next = 0;
next = strchr(c, '.');
if (next) *next = 0;
return c;
}
int alphanum_to_int(char c)
{
return (c < 58) ? c - 48 : c-87;

View File

@ -4,6 +4,7 @@
#include <time.h>
#include "list.h"
char *basecfg(char *cfgfile);
int alphanum_to_int(char c);
char int_to_alphanum(int i);
void read_all(int fd, char *buffer, size_t bytes);