mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Small updates
This commit is contained in:
parent
354b0cbdcb
commit
00d483697a
4
Makefile
4
Makefile
@ -1,5 +1,5 @@
|
||||
CC=gcc
|
||||
GPU=0
|
||||
GPU=1
|
||||
COMMON=-Wall `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-O3
|
||||
@ -15,7 +15,7 @@ LDFLAGS= -lOpenCL
|
||||
endif
|
||||
endif
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
|
@ -34,21 +34,37 @@ ACTIVATION get_activation(char *s)
|
||||
return RELU;
|
||||
}
|
||||
|
||||
float linear_activate(float x){return x;}
|
||||
float sigmoid_activate(float x){return 1./(1. + exp(-x));}
|
||||
float relu_activate(float x){return x*(x>0);}
|
||||
float ramp_activate(float x){return x*(x>0)+.1*x;}
|
||||
float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
|
||||
|
||||
float activate(float x, ACTIVATION a){
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
return x;
|
||||
return linear_activate(x);
|
||||
case SIGMOID:
|
||||
return 1./(1.+exp(-x));
|
||||
return sigmoid_activate(x);
|
||||
case RELU:
|
||||
return x*(x>0);
|
||||
return relu_activate(x);
|
||||
case RAMP:
|
||||
return x*(x>0) + .1*x;
|
||||
return ramp_activate(x);
|
||||
case TANH:
|
||||
return (exp(2*x)-1)/(exp(2*x)+1);
|
||||
return tanh_activate(x);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void activate_array(float *x, const int n, const ACTIVATION a)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
x[i] = activate(x[i], a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float gradient(float x, ACTIVATION a){
|
||||
switch(a){
|
||||
case LINEAR:
|
||||
@ -65,3 +81,11 @@ float gradient(float x, ACTIVATION a){
|
||||
return 0;
|
||||
}
|
||||
|
||||
void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
delta[i] *= gradient(x[i], a);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,8 @@ ACTIVATION get_activation(char *s);
|
||||
char *get_activation_string(ACTIVATION a);
|
||||
float activate(float x, ACTIVATION a);
|
||||
float gradient(float x, ACTIVATION a);
|
||||
void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta);
|
||||
void activate_array(float *x, const int n, const ACTIVATION a);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -39,27 +39,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
return layer;
|
||||
}
|
||||
|
||||
/*
|
||||
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
float delta = layer.bias_updates[i];
|
||||
layer.bias_adapt[i] += delta*delta;
|
||||
layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
|
||||
layer.biases[i] += layer.bias_momentum[i];
|
||||
}
|
||||
for(i = 0; i < layer.outputs*layer.inputs; ++i){
|
||||
float delta = layer.weight_updates[i];
|
||||
layer.weight_adapt[i] += delta*delta;
|
||||
layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
|
||||
layer.weights[i] += layer.weight_momentum[i];
|
||||
}
|
||||
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
|
||||
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
|
||||
}
|
||||
*/
|
||||
|
||||
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
@ -89,7 +68,6 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
}
|
||||
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
@ -110,8 +88,6 @@ void learn_connected_layer(connected_layer layer, float *input)
|
||||
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
memset(delta, 0, layer.inputs*sizeof(float));
|
||||
|
||||
int m = layer.inputs;
|
||||
int k = layer.outputs;
|
||||
int n = layer.batch;
|
||||
@ -120,40 +96,6 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
float *b = layer.delta;
|
||||
float *c = delta;
|
||||
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
||||
}
|
||||
/*
|
||||
void forward_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
layer.output[i] = layer.biases[i];
|
||||
for(j = 0; j < layer.inputs; ++j){
|
||||
layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
|
||||
}
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
}
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i, j;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
layer.bias_updates[i] += layer.delta[i];
|
||||
for(j = 0; j < layer.inputs; ++j){
|
||||
layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
for(j = 0; j < layer.inputs; ++j){
|
||||
delta[j] = 0;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
@ -96,33 +96,14 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
|
||||
memset(layer.output, 0, m*n*sizeof(float));
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch));
|
||||
}
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
|
||||
for(i = 0; i < m*n; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
|
||||
}
|
||||
|
||||
void gradient_delta_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.n*
|
||||
layer.batch;
|
||||
for(i = 0; i < size; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
}
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
||||
activate_array(layer.output, m*n, layer.activation);
|
||||
}
|
||||
|
||||
void learn_bias_convolutional_layer(convolutional_layer layer)
|
||||
@ -143,13 +124,13 @@ void learn_bias_convolutional_layer(convolutional_layer layer)
|
||||
|
||||
void learn_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
gradient_delta_convolutional_layer(layer);
|
||||
learn_bias_convolutional_layer(layer);
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
gradient_array(layer.output, m*k, layer.activation, layer.delta);
|
||||
learn_bias_convolutional_layer(layer);
|
||||
|
||||
float *a = layer.delta;
|
||||
float *b = layer.col_image;
|
||||
@ -171,9 +152,7 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
float *b = layer.delta;
|
||||
float *c = layer.col_image;
|
||||
|
||||
|
||||
memset(c, 0, m*n*sizeof(float));
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
@ -194,61 +173,6 @@ void update_convolutional_layer(convolutional_layer layer, float step, float mom
|
||||
layer.filter_updates[i] *= momentum;
|
||||
}
|
||||
}
|
||||
/*
|
||||
|
||||
void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
|
||||
{
|
||||
image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
|
||||
image out_delta = get_convolutional_delta(layer);
|
||||
int i,j;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
rotate_image(layer.kernels[i]);
|
||||
}
|
||||
|
||||
zero_image(in_delta);
|
||||
upsample_image(out_delta, layer.stride, layer.upsampled);
|
||||
for(j = 0; j < in_delta.c; ++j){
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
rotate_image(layer.kernels[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void learn_convolutional_layer(convolutional_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
image in_image = float_to_image(layer.h, layer.w, layer.c, input);
|
||||
image out_delta = get_convolutional_delta(layer);
|
||||
gradient_delta_convolutional_layer(layer);
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
|
||||
layer.bias_updates[i] += avg_image_layer(out_delta, i);
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
|
||||
{
|
||||
int i,j;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
layer.bias_momentum[i] = step*(layer.bias_updates[i])
|
||||
+ momentum*layer.bias_momentum[i];
|
||||
layer.biases[i] += layer.bias_momentum[i];
|
||||
layer.bias_updates[i] = 0;
|
||||
int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
|
||||
for(j = 0; j < pixels; ++j){
|
||||
layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j])
|
||||
+ momentum*layer.kernel_momentum[i].data[j];
|
||||
layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
|
||||
}
|
||||
zero_image(layer.kernel_updates[i]);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void test_convolutional_layer()
|
||||
{
|
||||
|
@ -34,10 +34,6 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *delta);
|
||||
|
||||
//void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer);
|
||||
//void visualize_convolutional_filters(convolutional_layer layer, char *window);
|
||||
//void visualize_convolutional_layer(convolutional_layer layer);
|
||||
|
||||
image get_convolutional_image(convolutional_layer layer);
|
||||
image get_convolutional_delta(convolutional_layer layer);
|
||||
image get_convolutional_filter(convolutional_layer layer, int i);
|
||||
|
@ -74,7 +74,12 @@ void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
// Assume beta = 1 LULZ
|
||||
int i, j;
|
||||
for(i = 0; i < M; ++i){
|
||||
for(j = 0; j < N; ++j){
|
||||
C[i*ldc + j] *= BETA;
|
||||
}
|
||||
}
|
||||
if(!TA && !TB)
|
||||
cpu_gemm_nn( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
else if(TA && !TB)
|
||||
|
29
src/gemm.cl
29
src/gemm.cl
@ -1,5 +1,4 @@
|
||||
|
||||
|
||||
__kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int lda,
|
||||
__global float *B, int ldb,
|
||||
@ -40,33 +39,7 @@ __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
}
|
||||
|
||||
if(row < M && col < N){
|
||||
C[row*ldc+col] = val;
|
||||
C[row*ldc+col] = ALPHA*val + BETA*C[row*ldc+col];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
__kernel void gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int lda,
|
||||
__global float *B, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int ldc)
|
||||
{
|
||||
float val = 0;
|
||||
int row = get_global_id(0);
|
||||
int col = get_global_id(1);
|
||||
int i;
|
||||
for(i = 0; i < K; ++i){
|
||||
float Aval;
|
||||
if(TA) Aval = A[i*lda+row];
|
||||
else Aval = A[row*lda+i];
|
||||
|
||||
float Bval;
|
||||
if(TB) Bval = B[col*ldb+i];
|
||||
else Bval = B[col+i*ldb];
|
||||
|
||||
val += Aval*Bval;
|
||||
}
|
||||
C[row*ldc+col] = val;
|
||||
}
|
||||
|
||||
*/
|
||||
|
@ -24,7 +24,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
cpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
gpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
}
|
||||
|
||||
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
|
||||
|
@ -5,6 +5,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
float *C, int ldc);
|
||||
float *random_matrix(int rows, int cols);
|
||||
void time_random_matrix(int TA, int TB, int m, int k, int n);
|
||||
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix);
|
||||
void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix);
|
||||
void im2col_cpu(float* data_im, const int channels,
|
||||
|
@ -6,7 +6,6 @@
|
||||
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
//#include "old_conv.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
|
12
src/tests.c
12
src/tests.c
@ -302,9 +302,9 @@ void test_nist()
|
||||
{
|
||||
srand(444444);
|
||||
srand(888888);
|
||||
network net = parse_network_cfg("cfg/nist_basic.cfg");
|
||||
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
||||
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
|
||||
network net = parse_network_cfg("cfg/nist.cfg");
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||
normalize_data_rows(train);
|
||||
normalize_data_rows(test);
|
||||
//randomize_data(train);
|
||||
@ -655,9 +655,7 @@ void visualize_cat()
|
||||
resize_network(net, im.h, im.w, im.c);
|
||||
forward_network(net, im.data);
|
||||
|
||||
image out = get_network_image(net);
|
||||
visualize_network(net);
|
||||
cvWaitKey(1000);
|
||||
cvWaitKey(0);
|
||||
}
|
||||
|
||||
@ -784,14 +782,14 @@ int main(int argc, char *argv[])
|
||||
// test_im2row();
|
||||
//test_split();
|
||||
//test_ensemble();
|
||||
//test_nist();
|
||||
test_nist();
|
||||
//test_cifar10();
|
||||
//test_vince();
|
||||
//test_full();
|
||||
//train_VOC();
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 0);
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 1);
|
||||
features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
|
||||
//features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
|
||||
//visualize_imagenet_features("data/assira/train.list");
|
||||
//visualize_imagenet_topk("data/VOC2012.list");
|
||||
//visualize_cat();
|
||||
|
Loading…
Reference in New Issue
Block a user