mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
GPU flag in Makefile
This commit is contained in:
parent
324e0a33dd
commit
354b0cbdcb
10
Makefile
10
Makefile
@ -1,21 +1,29 @@
|
||||
CC=gcc
|
||||
GPU=0
|
||||
COMMON=-Wall `pkg-config --cflags opencv` -I/usr/local/cuda/include/
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-O3
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS= -framework OpenCL
|
||||
endif
|
||||
else
|
||||
OPTS+= -march=native
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS= -lOpenCL
|
||||
endif
|
||||
endif
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
|
||||
OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o opencl.o gpu_gemm.o cpu_gemm.o normalization_layer.o
|
||||
OBJ=network.o image.o tests.o connected_layer.o maxpool_layer.o activations.o list.o option_list.o parser.o utils.o data.o matrix.o softmax_layer.o mini_blas.o convolutional_layer.o cpu_gemm.o normalization_layer.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=gpu_gemm.o opencl.o
|
||||
endif
|
||||
|
||||
all: $(EXEC)
|
||||
|
||||
|
@ -83,6 +83,89 @@ void gpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
}
|
||||
|
||||
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<1000; ++i){
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
srand(0);
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
float *c_gpu = random_matrix(m,n);
|
||||
memset(c, 0, m*n*sizeof(float));
|
||||
memset(c_gpu, 0, m*n*sizeof(float));
|
||||
int i;
|
||||
//pm(m,k,b);
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
||||
//pm(m, n, c_gpu);
|
||||
cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
//pm(m, n, c);
|
||||
double sse = 0;
|
||||
for(i = 0; i < m*n; ++i) {
|
||||
//printf("%f %f\n", c[i], c_gpu[i]);
|
||||
sse += pow(c[i]-c_gpu[i], 2);
|
||||
}
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n));
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_blas()
|
||||
{
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
test_gpu_accuracy(1,0,17,10,10);
|
||||
test_gpu_accuracy(0,1,17,10,10);
|
||||
test_gpu_accuracy(1,1,17,10,10);
|
||||
|
||||
test_gpu_accuracy(0,0,1000,10,100);
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
|
||||
time_gpu_random_matrix(0,0,1000,1000,100);
|
||||
time_random_matrix(0,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(0,1,1000,1000,100);
|
||||
time_random_matrix(0,1,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,0,1000,1000,100);
|
||||
time_random_matrix(1,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,1,1000,1000,100);
|
||||
time_random_matrix(1,1,1000,1000,100);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
cl_kernel get_gemm_kernel_slow()
|
||||
{
|
||||
|
@ -24,7 +24,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
float BETA,
|
||||
float *C, int ldc)
|
||||
{
|
||||
gpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
cpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
||||
}
|
||||
|
||||
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)
|
||||
@ -155,91 +155,5 @@ void test_blas()
|
||||
time_random_matrix(1,0,1000,100,100);
|
||||
time_random_matrix(0,1,1000,100,100);
|
||||
time_random_matrix(1,1,1000,100,100);
|
||||
|
||||
|
||||
}
|
||||
|
||||
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<1000; ++i){
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
srand(0);
|
||||
float *a;
|
||||
if(!TA) a = random_matrix(m,k);
|
||||
else a = random_matrix(k,m);
|
||||
int lda = (!TA)?k:m;
|
||||
float *b;
|
||||
if(!TB) b = random_matrix(k,n);
|
||||
else b = random_matrix(n,k);
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
float *c_gpu = random_matrix(m,n);
|
||||
memset(c, 0, m*n*sizeof(float));
|
||||
memset(c_gpu, 0, m*n*sizeof(float));
|
||||
int i;
|
||||
//pm(m,k,b);
|
||||
gpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
||||
//pm(m, n, c_gpu);
|
||||
cpu_gemm(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
//pm(m, n, c);
|
||||
double sse = 0;
|
||||
for(i = 0; i < m*n; ++i) {
|
||||
//printf("%f %f\n", c[i], c_gpu[i]);
|
||||
sse += pow(c[i]-c_gpu[i], 2);
|
||||
}
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n));
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_blas()
|
||||
{
|
||||
test_gpu_accuracy(0,0,17,10,10);
|
||||
test_gpu_accuracy(1,0,17,10,10);
|
||||
test_gpu_accuracy(0,1,17,10,10);
|
||||
test_gpu_accuracy(1,1,17,10,10);
|
||||
|
||||
test_gpu_accuracy(0,0,1000,10,100);
|
||||
test_gpu_accuracy(1,0,1000,10,100);
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
|
||||
time_gpu_random_matrix(0,0,1000,1000,100);
|
||||
time_random_matrix(0,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(0,1,1000,1000,100);
|
||||
time_random_matrix(0,1,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,0,1000,1000,100);
|
||||
time_random_matrix(1,0,1000,1000,100);
|
||||
|
||||
time_gpu_random_matrix(1,1,1000,1000,100);
|
||||
time_random_matrix(1,1,1000,1000,100);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -789,9 +789,9 @@ int main(int argc, char *argv[])
|
||||
//test_vince();
|
||||
//test_full();
|
||||
//train_VOC();
|
||||
features_VOC_image(argv[1], argv[2], argv[3], 0);
|
||||
features_VOC_image(argv[1], argv[2], argv[3], 1);
|
||||
//features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 0);
|
||||
//features_VOC_image(argv[1], argv[2], argv[3], 1);
|
||||
features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
|
||||
//visualize_imagenet_features("data/assira/train.list");
|
||||
//visualize_imagenet_topk("data/VOC2012.list");
|
||||
//visualize_cat();
|
||||
|
Loading…
Reference in New Issue
Block a user