Small updates

This commit is contained in:
Joseph Redmon 2014-04-30 16:17:40 -07:00
parent 354b0cbdcb
commit 00d483697a
12 changed files with 53 additions and 189 deletions

View File

@ -1,5 +1,5 @@
CC=gcc CC=gcc
GPU=0 GPU=1
COMMON=-Wall `pkg-config --cflags opencv` -I/usr/local/cuda/include/ COMMON=-Wall `pkg-config --cflags opencv` -I/usr/local/cuda/include/
UNAME = $(shell uname) UNAME = $(shell uname)
OPTS=-O3 OPTS=-O3
@ -15,7 +15,7 @@ LDFLAGS= -lOpenCL
endif endif
endif endif
CFLAGS= $(COMMON) $(OPTS) CFLAGS= $(COMMON) $(OPTS)
#CFLAGS= $(COMMON) -O0 -g CFLAGS= $(COMMON) -O0 -g
LDFLAGS+=`pkg-config --libs opencv` -lm LDFLAGS+=`pkg-config --libs opencv` -lm
VPATH=./src/ VPATH=./src/
EXEC=cnn EXEC=cnn

View File

@ -34,21 +34,37 @@ ACTIVATION get_activation(char *s)
return RELU; return RELU;
} }
float linear_activate(float x){return x;}
float sigmoid_activate(float x){return 1./(1. + exp(-x));}
float relu_activate(float x){return x*(x>0);}
float ramp_activate(float x){return x*(x>0)+.1*x;}
float tanh_activate(float x){return (exp(2*x)-1)/(exp(2*x)+1);}
float activate(float x, ACTIVATION a){ float activate(float x, ACTIVATION a){
switch(a){ switch(a){
case LINEAR: case LINEAR:
return x; return linear_activate(x);
case SIGMOID: case SIGMOID:
return 1./(1.+exp(-x)); return sigmoid_activate(x);
case RELU: case RELU:
return x*(x>0); return relu_activate(x);
case RAMP: case RAMP:
return x*(x>0) + .1*x; return ramp_activate(x);
case TANH: case TANH:
return (exp(2*x)-1)/(exp(2*x)+1); return tanh_activate(x);
} }
return 0; return 0;
} }
void activate_array(float *x, const int n, const ACTIVATION a)
{
int i;
for(i = 0; i < n; ++i){
x[i] = activate(x[i], a);
}
}
float gradient(float x, ACTIVATION a){ float gradient(float x, ACTIVATION a){
switch(a){ switch(a){
case LINEAR: case LINEAR:
@ -65,3 +81,11 @@ float gradient(float x, ACTIVATION a){
return 0; return 0;
} }
void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta)
{
int i;
for(i = 0; i < n; ++i){
delta[i] *= gradient(x[i], a);
}
}

View File

@ -10,6 +10,8 @@ ACTIVATION get_activation(char *s);
char *get_activation_string(ACTIVATION a); char *get_activation_string(ACTIVATION a);
float activate(float x, ACTIVATION a); float activate(float x, ACTIVATION a);
float gradient(float x, ACTIVATION a); float gradient(float x, ACTIVATION a);
void gradient_array(const float *x, const int n, const ACTIVATION a, float *delta);
void activate_array(float *x, const int n, const ACTIVATION a);
#endif #endif

View File

@ -39,27 +39,6 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
return layer; return layer;
} }
/*
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{
int i;
for(i = 0; i < layer.outputs; ++i){
float delta = layer.bias_updates[i];
layer.bias_adapt[i] += delta*delta;
layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
layer.biases[i] += layer.bias_momentum[i];
}
for(i = 0; i < layer.outputs*layer.inputs; ++i){
float delta = layer.weight_updates[i];
layer.weight_adapt[i] += delta*delta;
layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
layer.weights[i] += layer.weight_momentum[i];
}
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
}
*/
void update_connected_layer(connected_layer layer, float step, float momentum, float decay) void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{ {
int i; int i;
@ -89,7 +68,6 @@ void forward_connected_layer(connected_layer layer, float *input)
for(i = 0; i < layer.outputs*layer.batch; ++i){ for(i = 0; i < layer.outputs*layer.batch; ++i){
layer.output[i] = activate(layer.output[i], layer.activation); layer.output[i] = activate(layer.output[i], layer.activation);
} }
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
} }
void learn_connected_layer(connected_layer layer, float *input) void learn_connected_layer(connected_layer layer, float *input)
@ -110,8 +88,6 @@ void learn_connected_layer(connected_layer layer, float *input)
void backward_connected_layer(connected_layer layer, float *input, float *delta) void backward_connected_layer(connected_layer layer, float *input, float *delta)
{ {
memset(delta, 0, layer.inputs*sizeof(float));
int m = layer.inputs; int m = layer.inputs;
int k = layer.outputs; int k = layer.outputs;
int n = layer.batch; int n = layer.batch;
@ -120,40 +96,6 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
float *b = layer.delta; float *b = layer.delta;
float *c = delta; float *c = delta;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
} }
/*
void forward_connected_layer(connected_layer layer, float *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.output[i] = layer.biases[i];
for(j = 0; j < layer.inputs; ++j){
layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
}
layer.output[i] = activate(layer.output[i], layer.activation);
}
}
void learn_connected_layer(connected_layer layer, float *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation);
layer.bias_updates[i] += layer.delta[i];
for(j = 0; j < layer.inputs; ++j){
layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
}
}
}
void backward_connected_layer(connected_layer layer, float *input, float *delta)
{
int i, j;
for(j = 0; j < layer.inputs; ++j){
delta[j] = 0;
for(i = 0; i < layer.outputs; ++i){
delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
}
}
}
*/

View File

@ -96,33 +96,14 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
convolutional_out_width(layer)* convolutional_out_width(layer)*
layer.batch; layer.batch;
memset(layer.output, 0, m*n*sizeof(float));
float *a = layer.filters; float *a = layer.filters;
float *b = layer.col_image; float *b = layer.col_image;
float *c = layer.output; float *c = layer.output;
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch)); im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch));
} }
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
activate_array(layer.output, m*n, layer.activation);
for(i = 0; i < m*n; ++i){
layer.output[i] = activate(layer.output[i], layer.activation);
}
//for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
}
void gradient_delta_convolutional_layer(convolutional_layer layer)
{
int i;
int size = convolutional_out_height(layer)*
convolutional_out_width(layer)*
layer.n*
layer.batch;
for(i = 0; i < size; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation);
}
} }
void learn_bias_convolutional_layer(convolutional_layer layer) void learn_bias_convolutional_layer(convolutional_layer layer)
@ -143,13 +124,13 @@ void learn_bias_convolutional_layer(convolutional_layer layer)
void learn_convolutional_layer(convolutional_layer layer) void learn_convolutional_layer(convolutional_layer layer)
{ {
gradient_delta_convolutional_layer(layer);
learn_bias_convolutional_layer(layer);
int m = layer.n; int m = layer.n;
int n = layer.size*layer.size*layer.c; int n = layer.size*layer.size*layer.c;
int k = convolutional_out_height(layer)* int k = convolutional_out_height(layer)*
convolutional_out_width(layer)* convolutional_out_width(layer)*
layer.batch; layer.batch;
gradient_array(layer.output, m*k, layer.activation, layer.delta);
learn_bias_convolutional_layer(layer);
float *a = layer.delta; float *a = layer.delta;
float *b = layer.col_image; float *b = layer.col_image;
@ -171,9 +152,7 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
float *b = layer.delta; float *b = layer.delta;
float *c = layer.col_image; float *c = layer.col_image;
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
memset(c, 0, m*n*sizeof(float));
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
for(i = 0; i < layer.batch; ++i){ for(i = 0; i < layer.batch; ++i){
@ -194,61 +173,6 @@ void update_convolutional_layer(convolutional_layer layer, float step, float mom
layer.filter_updates[i] *= momentum; layer.filter_updates[i] *= momentum;
} }
} }
/*
void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
{
image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
image out_delta = get_convolutional_delta(layer);
int i,j;
for(i = 0; i < layer.n; ++i){
rotate_image(layer.kernels[i]);
}
zero_image(in_delta);
upsample_image(out_delta, layer.stride, layer.upsampled);
for(j = 0; j < in_delta.c; ++j){
for(i = 0; i < layer.n; ++i){
two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
}
}
for(i = 0; i < layer.n; ++i){
rotate_image(layer.kernels[i]);
}
}
void learn_convolutional_layer(convolutional_layer layer, float *input)
{
int i;
image in_image = float_to_image(layer.h, layer.w, layer.c, input);
image out_delta = get_convolutional_delta(layer);
gradient_delta_convolutional_layer(layer);
for(i = 0; i < layer.n; ++i){
kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
layer.bias_updates[i] += avg_image_layer(out_delta, i);
}
}
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
{
int i,j;
for(i = 0; i < layer.n; ++i){
layer.bias_momentum[i] = step*(layer.bias_updates[i])
+ momentum*layer.bias_momentum[i];
layer.biases[i] += layer.bias_momentum[i];
layer.bias_updates[i] = 0;
int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
for(j = 0; j < pixels; ++j){
layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j])
+ momentum*layer.kernel_momentum[i].data[j];
layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
}
zero_image(layer.kernel_updates[i]);
}
}
*/
void test_convolutional_layer() void test_convolutional_layer()
{ {

View File

@ -34,10 +34,6 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
void backward_convolutional_layer(convolutional_layer layer, float *delta); void backward_convolutional_layer(convolutional_layer layer, float *delta);
//void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer);
//void visualize_convolutional_filters(convolutional_layer layer, char *window);
//void visualize_convolutional_layer(convolutional_layer layer);
image get_convolutional_image(convolutional_layer layer); image get_convolutional_image(convolutional_layer layer);
image get_convolutional_delta(convolutional_layer layer); image get_convolutional_delta(convolutional_layer layer);
image get_convolutional_filter(convolutional_layer layer, int i); image get_convolutional_filter(convolutional_layer layer, int i);

View File

@ -74,7 +74,12 @@ void cpu_gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float BETA, float BETA,
float *C, int ldc) float *C, int ldc)
{ {
// Assume beta = 1 LULZ int i, j;
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
C[i*ldc + j] *= BETA;
}
}
if(!TA && !TB) if(!TA && !TB)
cpu_gemm_nn( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); cpu_gemm_nn( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
else if(TA && !TB) else if(TA && !TB)

View File

@ -1,5 +1,4 @@
__kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA, __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
__global float *A, int lda, __global float *A, int lda,
__global float *B, int ldb, __global float *B, int ldb,
@ -40,33 +39,7 @@ __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
} }
if(row < M && col < N){ if(row < M && col < N){
C[row*ldc+col] = val; C[row*ldc+col] = ALPHA*val + BETA*C[row*ldc+col];
} }
} }
/*
__kernel void gemm_slow(int TA, int TB, int M, int N, int K, float ALPHA,
__global float *A, int lda,
__global float *B, int ldb,
float BETA,
__global float *C, int ldc)
{
float val = 0;
int row = get_global_id(0);
int col = get_global_id(1);
int i;
for(i = 0; i < K; ++i){
float Aval;
if(TA) Aval = A[i*lda+row];
else Aval = A[row*lda+i];
float Bval;
if(TB) Bval = B[col*ldb+i];
else Bval = B[col+i*ldb];
val += Aval*Bval;
}
C[row*ldc+col] = val;
}
*/

View File

@ -24,7 +24,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float BETA, float BETA,
float *C, int ldc) float *C, int ldc)
{ {
cpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); gpu_gemm( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
} }
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix) void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix)

View File

@ -5,6 +5,7 @@ void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float BETA, float BETA,
float *C, int ldc); float *C, int ldc);
float *random_matrix(int rows, int cols); float *random_matrix(int rows, int cols);
void time_random_matrix(int TA, int TB, int m, int k, int n);
void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix); void im2row(float *image, int h, int w, int c, int size, int stride, float *matrix);
void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix); void im2col(float *image, int h, int w, int c, int size, int stride, float *matrix);
void im2col_cpu(float* data_im, const int channels, void im2col_cpu(float* data_im, const int channels,

View File

@ -6,7 +6,6 @@
#include "connected_layer.h" #include "connected_layer.h"
#include "convolutional_layer.h" #include "convolutional_layer.h"
//#include "old_conv.h"
#include "maxpool_layer.h" #include "maxpool_layer.h"
#include "normalization_layer.h" #include "normalization_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"

View File

@ -302,9 +302,9 @@ void test_nist()
{ {
srand(444444); srand(444444);
srand(888888); srand(888888);
network net = parse_network_cfg("cfg/nist_basic.cfg"); network net = parse_network_cfg("cfg/nist.cfg");
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
normalize_data_rows(train); normalize_data_rows(train);
normalize_data_rows(test); normalize_data_rows(test);
//randomize_data(train); //randomize_data(train);
@ -655,9 +655,7 @@ void visualize_cat()
resize_network(net, im.h, im.w, im.c); resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data); forward_network(net, im.data);
image out = get_network_image(net);
visualize_network(net); visualize_network(net);
cvWaitKey(1000);
cvWaitKey(0); cvWaitKey(0);
} }
@ -784,14 +782,14 @@ int main(int argc, char *argv[])
// test_im2row(); // test_im2row();
//test_split(); //test_split();
//test_ensemble(); //test_ensemble();
//test_nist(); test_nist();
//test_cifar10(); //test_cifar10();
//test_vince(); //test_vince();
//test_full(); //test_full();
//train_VOC(); //train_VOC();
//features_VOC_image(argv[1], argv[2], argv[3], 0); //features_VOC_image(argv[1], argv[2], argv[3], 0);
//features_VOC_image(argv[1], argv[2], argv[3], 1); //features_VOC_image(argv[1], argv[2], argv[3], 1);
features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
//visualize_imagenet_features("data/assira/train.list"); //visualize_imagenet_features("data/assira/train.list");
//visualize_imagenet_topk("data/VOC2012.list"); //visualize_imagenet_topk("data/VOC2012.list");
//visualize_cat(); //visualize_cat();