mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
python stuff
This commit is contained in:
parent
d7088fdec1
commit
0158fb23b2
@ -38,14 +38,18 @@ import darknet as dn
|
||||
# Darknet
|
||||
net = dn.load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0)
|
||||
meta = dn.load_meta("cfg/coco.data")
|
||||
r = dn.detect(net, meta, "data/dog.jpg")
|
||||
print r
|
||||
import time
|
||||
tStart = time.time()
|
||||
for i in range(10):
|
||||
r = dn.detect(net, meta, "data/dog.jpg")
|
||||
print(time.time() - tStart)
|
||||
|
||||
# scipy
|
||||
arr= imread('data/dog.jpg')
|
||||
im = array_to_image(arr)
|
||||
r = detect2(net, meta, im)
|
||||
print r
|
||||
tStart = time.time()
|
||||
for i in range(10):
|
||||
r = dn.detect(net, meta, arr)
|
||||
print(time.time() - tStart)
|
||||
|
||||
# OpenCV
|
||||
arr = cv2.imread('data/dog.jpg')
|
||||
|
@ -9,20 +9,11 @@ sys.path.append(os.path.join(os.getcwd(),'python/'))
|
||||
import darknet as dn
|
||||
import pdb
|
||||
|
||||
<<<<<<< HEAD
|
||||
net = dn.load_net("cfg/yolo-tag.cfg", "yolo-tag_final.weights", 0)
|
||||
meta = dn.load_meta("cfg/openimages.data")
|
||||
pdb.set_trace()
|
||||
rr = dn.detect(net, meta, 'data/dog.jpg')
|
||||
print rr
|
||||
pdb.set_trace()
|
||||
=======
|
||||
dn.set_gpu(0)
|
||||
net = dn.load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0)
|
||||
meta = dn.load_meta("cfg/coco.data")
|
||||
r = dn.detect(net, meta, "data/dog.jpg")
|
||||
print r
|
||||
>>>>>>> 16686cec576580489ab3c7c78183e6efeafae780
|
||||
|
||||
# And then down here you could detect a lot more images like:
|
||||
rr = dn.detect(net, meta, "data/eagle.jpg")
|
||||
|
@ -13,7 +13,10 @@ def sample(probs):
|
||||
return len(probs)-1
|
||||
|
||||
def c_array(ctype, values):
|
||||
return (ctype * len(values))(*values)
|
||||
arr = (ctype * len(values))()
|
||||
arr[:] = values
|
||||
return arr
|
||||
|
||||
|
||||
class BOX(Structure):
|
||||
_fields_ = [("x", c_float),
|
||||
@ -101,6 +104,18 @@ predict_image.restype = POINTER(c_float)
|
||||
network_detect = lib.network_detect
|
||||
network_detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
|
||||
|
||||
import numpy
|
||||
def array_to_image(arr):
|
||||
arr = arr.copy()
|
||||
arr = arr.transpose(2,0,1)
|
||||
c = arr.shape[0]
|
||||
h = arr.shape[1]
|
||||
w = arr.shape[2]
|
||||
arr = (arr.astype(numpy.float32)/255.0).flatten()
|
||||
data = c_array(c_float, arr)
|
||||
im = IMAGE(w,h,c,data)
|
||||
return im
|
||||
|
||||
def classify(net, meta, im):
|
||||
out = predict_image(net, im)
|
||||
res = []
|
||||
@ -110,7 +125,10 @@ def classify(net, meta, im):
|
||||
return res
|
||||
|
||||
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
|
||||
im = load_image(image, 0, 0)
|
||||
if type(image) == numpy.ndarray:
|
||||
im = array_to_image(image)
|
||||
else:
|
||||
im = load_image(image, 0, 0)
|
||||
boxes = make_boxes(net)
|
||||
probs = make_probs(net)
|
||||
num = num_boxes(net)
|
||||
@ -121,7 +139,9 @@ def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
|
||||
if probs[j][i] > 0:
|
||||
res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h)))
|
||||
res = sorted(res, key=lambda x: -x[1])
|
||||
free_image(im)
|
||||
|
||||
if type(image) != numpy.ndarray:
|
||||
free_image(im)
|
||||
free_ptrs(cast(probs, POINTER(c_void_p)), num)
|
||||
return res
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user