mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
160 lines
4.3 KiB
Python
160 lines
4.3 KiB
Python
from ctypes import *
|
|
import math
|
|
import random
|
|
|
|
def sample(probs):
|
|
s = sum(probs)
|
|
probs = [a/s for a in probs]
|
|
r = random.uniform(0, 1)
|
|
for i in range(len(probs)):
|
|
r = r - probs[i]
|
|
if r <= 0:
|
|
return i
|
|
return len(probs)-1
|
|
|
|
def c_array(ctype, values):
|
|
arr = (ctype * len(values))()
|
|
arr[:] = values
|
|
return arr
|
|
|
|
|
|
class BOX(Structure):
|
|
_fields_ = [("x", c_float),
|
|
("y", c_float),
|
|
("w", c_float),
|
|
("h", c_float)]
|
|
|
|
class IMAGE(Structure):
|
|
_fields_ = [("w", c_int),
|
|
("h", c_int),
|
|
("c", c_int),
|
|
("data", POINTER(c_float))]
|
|
|
|
class METADATA(Structure):
|
|
_fields_ = [("classes", c_int),
|
|
("names", POINTER(c_char_p))]
|
|
|
|
|
|
|
|
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
|
|
lib = CDLL("libdarknet.so", RTLD_GLOBAL)
|
|
lib.network_width.argtypes = [c_void_p]
|
|
lib.network_width.restype = c_int
|
|
lib.network_height.argtypes = [c_void_p]
|
|
lib.network_height.restype = c_int
|
|
|
|
predict = lib.network_predict
|
|
predict.argtypes = [c_void_p, POINTER(c_float)]
|
|
predict.restype = POINTER(c_float)
|
|
|
|
set_gpu = lib.cuda_set_device
|
|
set_gpu.argtypes = [c_int]
|
|
|
|
make_image = lib.make_image
|
|
make_image.argtypes = [c_int, c_int, c_int]
|
|
make_image.restype = IMAGE
|
|
|
|
make_boxes = lib.make_boxes
|
|
make_boxes.argtypes = [c_void_p]
|
|
make_boxes.restype = POINTER(BOX)
|
|
|
|
free_ptrs = lib.free_ptrs
|
|
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
|
|
|
|
num_boxes = lib.num_boxes
|
|
num_boxes.argtypes = [c_void_p]
|
|
num_boxes.restype = c_int
|
|
|
|
make_probs = lib.make_probs
|
|
make_probs.argtypes = [c_void_p]
|
|
make_probs.restype = POINTER(POINTER(c_float))
|
|
|
|
detect = lib.network_predict
|
|
detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
|
|
|
|
reset_rnn = lib.reset_rnn
|
|
reset_rnn.argtypes = [c_void_p]
|
|
|
|
load_net = lib.load_network
|
|
load_net.argtypes = [c_char_p, c_char_p, c_int]
|
|
load_net.restype = c_void_p
|
|
|
|
free_image = lib.free_image
|
|
free_image.argtypes = [IMAGE]
|
|
|
|
letterbox_image = lib.letterbox_image
|
|
letterbox_image.argtypes = [IMAGE, c_int, c_int]
|
|
letterbox_image.restype = IMAGE
|
|
|
|
load_meta = lib.get_metadata
|
|
lib.get_metadata.argtypes = [c_char_p]
|
|
lib.get_metadata.restype = METADATA
|
|
|
|
load_image = lib.load_image_color
|
|
load_image.argtypes = [c_char_p, c_int, c_int]
|
|
load_image.restype = IMAGE
|
|
|
|
rgbgr_image = lib.rgbgr_image
|
|
rgbgr_image.argtypes = [IMAGE]
|
|
|
|
predict_image = lib.network_predict_image
|
|
predict_image.argtypes = [c_void_p, IMAGE]
|
|
predict_image.restype = POINTER(c_float)
|
|
|
|
network_detect = lib.network_detect
|
|
network_detect.argtypes = [c_void_p, IMAGE, c_float, c_float, c_float, POINTER(BOX), POINTER(POINTER(c_float))]
|
|
|
|
import numpy
|
|
def array_to_image(arr):
|
|
arr = arr.copy()
|
|
arr = arr.transpose(2,0,1)
|
|
c = arr.shape[0]
|
|
h = arr.shape[1]
|
|
w = arr.shape[2]
|
|
arr = (arr.astype(numpy.float32)/255.0).flatten()
|
|
data = c_array(c_float, arr)
|
|
im = IMAGE(w,h,c,data)
|
|
return im
|
|
|
|
def classify(net, meta, im):
|
|
out = predict_image(net, im)
|
|
res = []
|
|
for i in range(meta.classes):
|
|
res.append((meta.names[i], out[i]))
|
|
res = sorted(res, key=lambda x: -x[1])
|
|
return res
|
|
|
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
|
|
if type(image) == numpy.ndarray:
|
|
im = array_to_image(image)
|
|
else:
|
|
im = load_image(image, 0, 0)
|
|
boxes = make_boxes(net)
|
|
probs = make_probs(net)
|
|
num = num_boxes(net)
|
|
network_detect(net, im, thresh, hier_thresh, nms, boxes, probs)
|
|
res = []
|
|
for j in range(num):
|
|
for i in range(meta.classes):
|
|
if probs[j][i] > 0:
|
|
res.append((meta.names[i], probs[j][i], (boxes[j].x, boxes[j].y, boxes[j].w, boxes[j].h)))
|
|
res = sorted(res, key=lambda x: -x[1])
|
|
|
|
if type(image) != numpy.ndarray:
|
|
free_image(im)
|
|
free_ptrs(cast(probs, POINTER(c_void_p)), num)
|
|
return res
|
|
|
|
if __name__ == "__main__":
|
|
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0)
|
|
#im = load_image("data/wolf.jpg", 0, 0)
|
|
#meta = load_meta("cfg/imagenet1k.data")
|
|
#r = classify(net, meta, im)
|
|
#print r[:10]
|
|
net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0)
|
|
meta = load_meta("cfg/coco.data")
|
|
r = detect(net, meta, "data/dog.jpg")
|
|
print(r)
|
|
|
|
|