mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
XNOR coalesced memory access, and avoid bank conflicts
This commit is contained in:
@ -117,13 +117,16 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
}
|
||||
|
||||
if(l.xnor){
|
||||
|
||||
if (!l.align_bit_weights_gpu || state.train) {
|
||||
binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
|
||||
|
||||
swap_binary(&l);
|
||||
binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
|
||||
state.input = l.binary_input_gpu;
|
||||
}
|
||||
swap_binary(&l);
|
||||
binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
|
||||
state.input = l.binary_input_gpu;
|
||||
//swap_binary(&l);
|
||||
//binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
|
||||
//state.input = l.binary_input_gpu;
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
if (l.align_bit_weights_gpu && !state.train)
|
||||
@ -141,6 +144,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
size_t t_intput_size = new_ldb * n;
|
||||
size_t t_bit_input_size = t_intput_size / 8;// +1;
|
||||
|
||||
//if(0)
|
||||
{
|
||||
int i = 0;
|
||||
im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align);
|
||||
@ -156,10 +160,18 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
// should be optimized
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//if(0) {//if (k > 1000) { // sequentially input-shared - BAD
|
||||
// gemm_nn_custom_bin_mean_transposed_sequentially_gpu(m, n, k,
|
||||
// (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//}
|
||||
//else { // coalescing & weights-shared-memory - GOOD
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu,
|
||||
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu);
|
||||
//}
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
//getchar();
|
||||
}
|
||||
|
||||
|
||||
@ -172,12 +184,14 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
}
|
||||
*/
|
||||
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
if (l.binary || l.xnor) swap_binary(&l);
|
||||
//add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
if(l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
//if (l.binary || l.xnor) swap_binary(&l);
|
||||
//cudaDeviceSynchronize();
|
||||
return;
|
||||
}
|
||||
|
@ -24,7 +24,14 @@ void transpose_bin_gpu(unsigned char *A, unsigned char *B, const int n, const in
|
||||
|
||||
void fill_int8_gpu(unsigned char *src, unsigned char val, size_t size);
|
||||
|
||||
// shared_memory + partial coalescing = GOOD
|
||||
void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr, float *bias);
|
||||
|
||||
// sequentially - BAD
|
||||
void gemm_nn_custom_bin_mean_transposed_sequentially_gpu(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr);
|
||||
|
@ -8,6 +8,10 @@ extern "C" {
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <cuda.h>
|
||||
|
||||
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
|
||||
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
|
||||
|
||||
@ -105,6 +109,7 @@ __global__ void im2col_align_gpu_kernel(const int n, const float* data_im,
|
||||
//float src_val = (h >= 0 && w >= 0 && h < height && w < width) ? data_im_ptr[i * width + j] : 0;
|
||||
//unsigned int bit_mask = __ballot_sync(0xffffffff, src_val > 0);
|
||||
//if (threadIdx.x % WARP_SIZE == 0) *((unsigned int*)data_col_ptr_32) = bit_mask;
|
||||
// use atomicOr() // *dst_ptr |= (mask << (col_index % 8));
|
||||
//data_col_ptr_32 += bit_align / 32;
|
||||
|
||||
//data_col_ptr += height_col * width_col;
|
||||
@ -283,6 +288,10 @@ __device__ __host__ static inline uint8_t xnor_bit1(uint8_t a, uint8_t b) {
|
||||
return ~(a^b) & 0b1;
|
||||
}
|
||||
|
||||
__device__ __host__ static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
|
||||
return ~(a^b);
|
||||
}
|
||||
|
||||
__device__ __host__ static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
|
||||
return ~(a^b);
|
||||
}
|
||||
@ -356,7 +365,7 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
// B (input) in the shared_memory
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
@ -367,25 +376,27 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
__shared__ uint64_t B_s[4096]; // 32 KB // [ldb x N`] // max = 262 144 bits
|
||||
|
||||
int start_j = blockIdx.x*blockDim.x / M;
|
||||
int end_j = (blockIdx.x*blockDim.x + blockDim.x) / M + 1;
|
||||
{
|
||||
int end_j = (blockIdx.x*blockDim.x + blockDim.x) / M + 1;
|
||||
|
||||
size_t shared_size = ldb * (end_j - start_j);
|
||||
size_t shared_size = ldb * (end_j - start_j);
|
||||
|
||||
//float tmp_shared_size = ldb * (blockDim.x / M);
|
||||
//int passes = (4096 * 64) / tmp_shared_size - 1;
|
||||
//size_t shared_size = tmp_shared_size * passes;
|
||||
//float tmp_shared_size = ldb * (blockDim.x / M);
|
||||
//int passes = (4096 * 64) / tmp_shared_size - 1;
|
||||
//size_t shared_size = tmp_shared_size * passes;
|
||||
|
||||
int k;
|
||||
for (int k = threadIdx.x * 256; k < shared_size; k += blockDim.x * 256) {
|
||||
int x = start_j*ldb + k;
|
||||
if (x < (N*ldb)) *((ulonglong4 *)(B_s + k / 8)) = *((ulonglong4 *)(B + x / 8));
|
||||
}
|
||||
int k;
|
||||
for (int k = threadIdx.x * 256; k < shared_size; k += blockDim.x * 256) {
|
||||
int x = start_j*ldb + k;
|
||||
if (x < (N*ldb)) *((ulonglong4 *)(B_s + k / 8)) = *((ulonglong4 *)(B + x / 8));
|
||||
}
|
||||
|
||||
////if (j_cur < N && (index % M == 0 || threadIdx.x == 0)) {
|
||||
//// for (int k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
//// *((uint64_t *)(B_s + (local_j*ldb + k) / 8)) = *((uint64_t *)(B + (j_cur*ldb + k) / 8)); // input
|
||||
////if (j_cur < N && (index % M == 0 || threadIdx.x == 0)) {
|
||||
//// for (int k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
//// *((uint64_t *)(B_s + (local_j*ldb + k) / 8)) = *((uint64_t *)(B + (j_cur*ldb + k) / 8)); // input
|
||||
////}
|
||||
////}
|
||||
////}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
@ -427,14 +438,19 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
}
|
||||
|
||||
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
||||
count = count - f1; // remove extra bits (from empty space for align only)
|
||||
//C[i*ldc + j] += 2 * count*mean_val;
|
||||
//C[i*ldc + j] += -2 * f1*mean_val;
|
||||
//C[i*ldc + j] += - K*mean_val;
|
||||
|
||||
count = count - f1; // remove extra bits (from empty space for align only)
|
||||
C[i*ldc + j] = (2 * count - K) * mean_val;
|
||||
|
||||
//B_s[0] = (2 * count - K) * mean_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
// A (weights) in the shared_memory
|
||||
@ -497,13 +513,293 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
|
||||
}
|
||||
*/
|
||||
|
||||
#include <cstdio>
|
||||
__inline__ __device__
|
||||
int warpAllReduceSum(int val) {
|
||||
for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2)
|
||||
val += __shfl_xor(val, mask);
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
// Coalescing
|
||||
// A (weights) in the shared_memory - GOOD
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr, float *bias_arr)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
__shared__ uint8_t A_s[6144*8/4];
|
||||
//__shared__ uint64_t A_s[6144]; // 48 KB // [lda x M`]
|
||||
//__shared__ uint8_t A_s[6144*8]; // 48 KB // [lda x M`]
|
||||
|
||||
int start_i = blockIdx.x*blockDim.x / N;
|
||||
int end_i = (blockIdx.x*blockDim.x + blockDim.x) / N + 1;
|
||||
|
||||
size_t shared_size = lda * (end_i - start_i);
|
||||
|
||||
int i_cur = index / N;
|
||||
int local_i = i_cur - start_i;
|
||||
|
||||
for (int k = threadIdx.x * 64; k < shared_size; k += blockDim.x * 64) {
|
||||
int x = start_i*lda + k;
|
||||
if (x < (M*lda)) *((uint64_t *)(A_s + k / 8)) = *((uint64_t *)(A + x / 8));
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int i, j, k, h;
|
||||
|
||||
j = index % N;
|
||||
{ // out_h*out_w - one channel output size [169 - 173056]
|
||||
i = index / N;
|
||||
//if (i < M) // l.n - filters [16 - 55 - 1024]
|
||||
{
|
||||
int count = 0;
|
||||
k = 0;
|
||||
|
||||
//#ifdef NON_USED
|
||||
// 32 thread X 64 bit = 2048 bit
|
||||
for (; k < (K - 2048); k += 2048) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
uint64_t c_bit64;
|
||||
|
||||
//int64_t A_cur_index = (i*lda + k) / 8;
|
||||
int64_t A_cur_index = (local_i*lda + k) / 8;
|
||||
int64_t B_cur_index = (j*ldb + k) / 8;
|
||||
if (i >= M) A_cur_index = 0;
|
||||
|
||||
#pragma unroll WARP_SIZE
|
||||
for (int t = 0; t < WARP_SIZE; ++t) {
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
const int64_t A_i = __shfl(A_cur_index, t) + 8 * lane_id;
|
||||
const int64_t B_i = __shfl(B_cur_index, t) + 8 * lane_id;
|
||||
|
||||
{
|
||||
//uint64_t a_bit64 = *((uint64_t *)(A + A_i)); // weights
|
||||
uint64_t a_bit64 = *((uint64_t *)(A_s + A_i)); // weights
|
||||
uint64_t b_bit64 = *((uint64_t *)(B + B_i)); // input
|
||||
c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
int tmp_count = __popcll(c_bit64);
|
||||
|
||||
int sum_count = warpAllReduceSum(tmp_count);
|
||||
if (lane_id == t) count += sum_count;
|
||||
}
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
|
||||
//#ifdef NON_USED
|
||||
// 32 thread X 32 bit = 1024 bit
|
||||
for (; k < (K - 1024); k += 1024) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
|
||||
//int64_t A_cur_index = (i*lda + k) / 8;
|
||||
int64_t A_cur_index = (local_i*lda + k) / 8;
|
||||
int64_t B_cur_index = (j*ldb + k) / 8;
|
||||
if (i >= M) A_cur_index = 0;
|
||||
|
||||
#pragma unroll WARP_SIZE
|
||||
for (int t = 0; t < WARP_SIZE; ++t) {
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
const int64_t A_i = __shfl(A_cur_index, t) + 4 * lane_id;
|
||||
const int64_t B_i = __shfl(B_cur_index, t) + 4 * lane_id;
|
||||
|
||||
{
|
||||
//uint64_t a_bit64 = *((uint64_t *)(A + A_i)); // weights
|
||||
uint32_t a_bit32 = *((uint32_t *)(A_s + A_i)); // weights
|
||||
uint32_t b_bit32 = *((uint32_t *)(B + B_i)); // input
|
||||
uint32_t c_bit32 = xnor_int32(a_bit32, b_bit32);
|
||||
int tmp_count = __popc(c_bit32);
|
||||
|
||||
int sum_count = warpAllReduceSum(tmp_count);
|
||||
if (lane_id == t) count += sum_count;
|
||||
}
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
|
||||
if (i < M)
|
||||
{
|
||||
float mean_val = mean_arr[i];
|
||||
float bias_val = bias_arr[i];
|
||||
|
||||
//#ifdef NON_USED
|
||||
for (; k < K; k += 256) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
|
||||
//ulonglong4 a_bit256 = *((ulonglong4 *)(A + (i*lda + k) / 8)); // weights
|
||||
ulonglong4 a_bit256 = *((ulonglong4 *)(A_s + (local_i*lda + k) / 8)); // weights
|
||||
ulonglong4 b_bit256 = *((ulonglong4 *)(B + (j*ldb + k) / 8)); // input
|
||||
ulonglong4 c_bit256 = xnor_int256(a_bit256, b_bit256);
|
||||
|
||||
count += __popcll(c_bit256.w) + __popcll(c_bit256.x) +
|
||||
__popcll(c_bit256.y) + __popcll(c_bit256.z);
|
||||
}
|
||||
//#endif
|
||||
|
||||
#ifdef NON_USED
|
||||
for (; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
//uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); // weights
|
||||
uint64_t a_bit64 = *((uint64_t *)(A_s + (local_i*lda + k) / 8)); // weights
|
||||
uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); // input
|
||||
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
|
||||
count += __popcll(c_bit64);
|
||||
}
|
||||
#endif
|
||||
|
||||
const int bit_step = 256;
|
||||
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
||||
count = count - f1; // remove extra bits (from empty space for align only)
|
||||
|
||||
C[i*ldc + j] = (2 * count - K) *mean_val + bias_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
// Coalescing
|
||||
// B (input) in the shared_memory - GOOD
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr, float *bias_arr)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
__shared__ uint8_t B_s[4096*8]; // 32 KB // [ldb x N`] // max = 262 144 bits
|
||||
//__shared__ uint64_t B_s[4096]; // 32 KB // [ldb x N`] // max = 262 144 bits
|
||||
|
||||
int start_j = blockIdx.x*blockDim.x / M;
|
||||
int end_j = (blockIdx.x*blockDim.x + blockDim.x) / M + 1;
|
||||
|
||||
size_t shared_size = ldb * (end_j - start_j);
|
||||
|
||||
int j_cur = index / M;
|
||||
int local_j = j_cur - start_j;
|
||||
|
||||
for (int k = threadIdx.x * 256; k < shared_size; k += blockDim.x * 256) {
|
||||
int x = start_j*ldb + k;
|
||||
if (x < (N*ldb)) *((ulonglong4 *)(B_s + k / 8)) = *((ulonglong4 *)(B + x / 8));
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int i, j, k;
|
||||
|
||||
i = index % M; // l.n - filters [16 - 55 - 1024]
|
||||
{
|
||||
j = index / M; // out_h*out_w - one channel output size [169 - 173056]
|
||||
if (j < N)
|
||||
{
|
||||
int count = 0;
|
||||
k = 0;
|
||||
|
||||
//#ifdef NON_USED
|
||||
// 32 thread X 64 bit = 2048 bit
|
||||
for (; k < (K - 2048); k += 2048) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
uint64_t c_bit64;
|
||||
|
||||
int64_t A_cur_index = (i*lda + k) / 8;
|
||||
//int64_t B_cur_index = (j*ldb + k) / 8;
|
||||
int64_t B_cur_index = (local_j*ldb + k) / 8;
|
||||
if (i >= M) A_cur_index = 0;
|
||||
|
||||
#pragma unroll WARP_SIZE
|
||||
for (int t = 0; t < WARP_SIZE; ++t) {
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
const int64_t A_i = __shfl(A_cur_index, t) + 8 * lane_id;
|
||||
const int64_t B_i = __shfl(B_cur_index, t) + 8 * lane_id;
|
||||
|
||||
{
|
||||
uint64_t a_bit64 = *((uint64_t *)(A + A_i)); // weights
|
||||
//uint64_t b_bit64 = *((uint64_t *)(B + B_i)); // input
|
||||
uint64_t b_bit64 = *((uint64_t *)(B_s + B_i)); // input
|
||||
c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
int tmp_count = __popcll(c_bit64);
|
||||
|
||||
int sum_count = warpAllReduceSum(tmp_count);
|
||||
if (lane_id == t) count += sum_count;
|
||||
}
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
|
||||
//#ifdef NON_USED
|
||||
// 32 thread X 32 bit = 1024 bit
|
||||
for (; k < (K - 1024); k += 1024) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
|
||||
int64_t A_cur_index = (i*lda + k) / 8;
|
||||
//int64_t B_cur_index = (j*ldb + k) / 8;
|
||||
int64_t B_cur_index = (local_j*ldb + k) / 8;
|
||||
if (i >= M) A_cur_index = 0;
|
||||
|
||||
#pragma unroll WARP_SIZE
|
||||
for (int t = 0; t < WARP_SIZE; ++t) {
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
|
||||
const int64_t A_i = __shfl(A_cur_index, t) + 4 * lane_id;
|
||||
const int64_t B_i = __shfl(B_cur_index, t) + 4 * lane_id;
|
||||
|
||||
{
|
||||
uint32_t a_bit32 = *((uint32_t *)(A + A_i)); // weights
|
||||
//uint32_t b_bit32 = *((uint32_t *)(B + B_i)); // input
|
||||
uint32_t b_bit32 = *((uint32_t *)(B_s + B_i)); // input
|
||||
uint32_t c_bit32 = xnor_int32(a_bit32, b_bit32);
|
||||
int tmp_count = __popc(c_bit32);
|
||||
|
||||
int sum_count = warpAllReduceSum(tmp_count);
|
||||
if (lane_id == t) count += sum_count;
|
||||
}
|
||||
}
|
||||
}
|
||||
//#endif
|
||||
|
||||
if (i < M)
|
||||
{
|
||||
float mean_val = mean_arr[i];
|
||||
float bias_val = bias_arr[i];
|
||||
|
||||
//#ifdef NON_USED
|
||||
for (; k < K; k += 256) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
|
||||
ulonglong4 a_bit256 = *((ulonglong4 *)(A + (i*lda + k) / 8)); // weights
|
||||
//ulonglong4 b_bit256 = *((ulonglong4 *)(B + (j*ldb + k) / 8)); // input
|
||||
ulonglong4 b_bit256 = *((ulonglong4 *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
ulonglong4 c_bit256 = xnor_int256(a_bit256, b_bit256);
|
||||
|
||||
count += __popcll(c_bit256.w) + __popcll(c_bit256.x) +
|
||||
__popcll(c_bit256.y) + __popcll(c_bit256.z);
|
||||
}
|
||||
//#endif
|
||||
|
||||
#ifdef NON_USED
|
||||
for (; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
||||
uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); // weights
|
||||
//uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); // input
|
||||
uint64_t b_bit64 = *((uint64_t *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
|
||||
count += __popcll(c_bit64);
|
||||
}
|
||||
#endif
|
||||
|
||||
const int bit_step = 256;
|
||||
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
||||
count = count - f1; // remove extra bits (from empty space for align only)
|
||||
|
||||
C[i*ldc + j] = (2 * count - K) * mean_val + bias_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// GOOD
|
||||
void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
float *C, int ldc, float *mean_arr, float *bias)
|
||||
{
|
||||
size_t size = M*N;
|
||||
const int num_blocks = size / BLOCK + 1;
|
||||
@ -516,6 +812,143 @@ void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
|
||||
//printf(" shared_memory: (w) lda*BLOCK/N = %d, (i) ldb*BLOCK/M = %d, \t lda = %d \n\n", lda*BLOCK / N, ldb*BLOCK / M, lda);
|
||||
|
||||
gemm_nn_custom_bin_mean_transposed_gpu_kernel<<<num_blocks, BLOCK, 0, get_cuda_stream() >>>(
|
||||
M, N, K,
|
||||
A, lda,
|
||||
B, ldb,
|
||||
C, ldc,
|
||||
mean_arr, bias);
|
||||
}
|
||||
// --------------------------------
|
||||
|
||||
|
||||
|
||||
|
||||
// --------------------------------
|
||||
// sequentially - B (input) in the shared_memory - BAD
|
||||
// --------------------------------
|
||||
__global__ void gemm_nn_custom_bin_mean_transposed_sequentially_gpu_kernel(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
{
|
||||
//__shared__ float mean_shared[32];
|
||||
//__shared__ uint32_t B_s[8192]; // 32 KB // [ldb x N`] // max = 262 144 bits
|
||||
//__shared__ uint32_t B_s[4096]; // 16 KB // [ldb x N`] // max = 131 072 bits
|
||||
__shared__ uint8_t B_s[4096*4]; // 16 KB // [ldb x N`] // max = 131 072 bits
|
||||
|
||||
|
||||
const int K_items = WARP_SIZE;
|
||||
int start_j = blockIdx.x*blockDim.x / (K_items * M);
|
||||
|
||||
{
|
||||
int end_j = (blockIdx.x*blockDim.x + blockDim.x) / (K_items * M) + 1;
|
||||
if (end_j > N) end_j = N;
|
||||
size_t shared_size = ldb * (end_j - start_j);
|
||||
|
||||
if (shared_size != 0) {
|
||||
//if(threadIdx.x == 0) printf(" start_j = %d, end_j = %d, shared_size = %d \n", start_j, end_j, shared_size);
|
||||
|
||||
int k;
|
||||
for (int k = threadIdx.x * 32; k < shared_size; k += blockDim.x * 32) {
|
||||
int x = start_j*ldb + k;
|
||||
if (x < (N*ldb)) *((uint32_t *)(B_s + k / 8)) = *((uint32_t *)(B + x / 8));
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
{
|
||||
int i; // l.n
|
||||
int j; // out_h*out_w
|
||||
int k; // l.size * l.size * l.c
|
||||
|
||||
const int index2 = index / K_items;
|
||||
i = index2 % M; // max M
|
||||
j = index2 / M; // max N
|
||||
//j = index2 % N; // max N
|
||||
//i = index2 / N; // max M
|
||||
|
||||
//int j_cur = index / M;
|
||||
//int local_j = j_cur - start_j;
|
||||
int local_j = j - start_j;
|
||||
|
||||
//if (i <= 1 && j <= 1 ) printf(" k = %d, K = %d, K_items = %d, i = %d, j = %d, lda = %d, ldb = %d, ldc = %d \n",
|
||||
// k, K, K_items, i, j, lda, ldb, ldc);
|
||||
{ // l.n - filters [16 - 55 - 1024]
|
||||
// further improvements: for (l.n == 1024) iterate several (j)
|
||||
|
||||
|
||||
if (j < N)
|
||||
{ // out_h*out_w - one channel output size [169 - 173056]
|
||||
|
||||
int count = 0;
|
||||
|
||||
|
||||
const int bit_step = 32;
|
||||
for (k = (threadIdx.x % WARP_SIZE) * bit_step; k < K; k += bit_step*WARP_SIZE)
|
||||
{ // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
|
||||
uint32_t a_bit32 = *((uint32_t *)(A + (i*lda + k) / 8)); // weights
|
||||
//uint32_t b_bit32 = *((uint32_t *)(B + (j*ldb + k) / 8)); // input
|
||||
uint32_t b_bit32 = *((uint32_t *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
uint32_t c_bit32 = xnor_int32(a_bit32, b_bit32);
|
||||
|
||||
count += __popc(c_bit32);
|
||||
}
|
||||
|
||||
/*
|
||||
const int bit_step = 64;
|
||||
for (k = (threadIdx.x % WARP_SIZE) * bit_step; k < K; k += bit_step*WARP_SIZE)
|
||||
{ // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
|
||||
uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); // weights
|
||||
//uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
||||
uint64_t b_bit64 = *((uint64_t *)(B_s + (local_j*ldb + k) / 8)); // input
|
||||
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
||||
count += __popcll(c_bit64);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
//atomicAdd(&C[i*ldc + j], (2 * count) * mean_val);
|
||||
|
||||
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2)
|
||||
count += __shfl_down(count, offset);
|
||||
|
||||
|
||||
if (threadIdx.x % WARP_SIZE == 0) {
|
||||
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
|
||||
count = count - f1;
|
||||
float mean_val = mean_arr[i];
|
||||
C[i*ldc + j] = (2 * count - K) * mean_val;
|
||||
//B_s[threadIdx.x / WARP_SIZE] = (2 * count - K) * mean_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sequentially - BAD
|
||||
void gemm_nn_custom_bin_mean_transposed_sequentially_gpu(int M, int N, int K,
|
||||
unsigned char *A, int lda,
|
||||
unsigned char *B, int ldb,
|
||||
float *C, int ldc, float *mean_arr)
|
||||
{
|
||||
//size_t size = M*N;
|
||||
size_t size = M*N * 32;
|
||||
|
||||
const int num_blocks = size / BLOCK + 1;
|
||||
|
||||
//printf(" K = %d \n", K);
|
||||
|
||||
/*
|
||||
printf("\n gemm_bin size = %d, num_blocks = %d, M*K = %d KB, N*K = %d KB \n (w) M*K/num_blocks = %d KB, (i) N*K/num_blocks = %d KB \n",
|
||||
size, num_blocks, M*K / 1024, N*K / 1024, M*lda / num_blocks / 1024, N*ldb / num_blocks / 1024);
|
||||
printf(" M / 512 = %d, N / 512 = %d, M*lda / 512 = %d, N*ldb / 512 = %d \n", M / 512, N / 512, M*lda/512, N*ldb/512);
|
||||
*/
|
||||
//printf(" shared_memory: (w) lda*BLOCK/N = %d, (i) ldb*BLOCK/M = %d, \t lda = %d \n\n", lda*BLOCK / N, ldb*BLOCK / M, lda);
|
||||
|
||||
gemm_nn_custom_bin_mean_transposed_sequentially_gpu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(
|
||||
M, N, K,
|
||||
A, lda,
|
||||
B, ldb,
|
||||
|
@ -89,6 +89,7 @@ struct layer{
|
||||
int index;
|
||||
int binary;
|
||||
int xnor;
|
||||
int use_bin_output;
|
||||
int steps;
|
||||
int hidden;
|
||||
float dot;
|
||||
|
@ -862,8 +862,13 @@ void calculate_binary_weights(network net)
|
||||
if (l->xnor) {
|
||||
//printf("\n %d \n", j);
|
||||
l->lda_align = 256; // 256bit for AVX2
|
||||
//if (l->size*l->size*l->c >= 2048) l->lda_align = 512;
|
||||
|
||||
binary_align_weights(l);
|
||||
|
||||
if(net.layers[j + 1].use_bin_output) {
|
||||
l->activation = LINEAR;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -167,6 +167,7 @@ convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
|
||||
layer.flipped = option_find_int_quiet(options, "flipped", 0);
|
||||
layer.dot = option_find_float_quiet(options, "dot", 0);
|
||||
layer.use_bin_output = option_find_int_quiet(options, "bin_output", 0);
|
||||
if(params.net.adam){
|
||||
layer.B1 = params.net.B1;
|
||||
layer.B2 = params.net.B2;
|
||||
|
Reference in New Issue
Block a user