mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Training on VOC
This commit is contained in:
parent
f7a17f82eb
commit
118bdd6f62
4
Makefile
4
Makefile
@ -1,12 +1,12 @@
|
||||
CC=gcc
|
||||
COMMON=-Wall `pkg-config --cflags opencv`
|
||||
CFLAGS= $(COMMON) -O3 -ffast-math -flto
|
||||
UNAME = $(shell uname)
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
else
|
||||
CFLAGS += -march=native
|
||||
COMMON += -march=native
|
||||
endif
|
||||
CFLAGS= $(COMMON) -Ofast -flto
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS=`pkg-config --libs opencv` -lm
|
||||
VPATH=./src/
|
||||
|
@ -1,8 +0,0 @@
|
||||
[conn]
|
||||
input=1690
|
||||
output = 10
|
||||
activation=relu
|
||||
|
||||
[conn]
|
||||
output = 1
|
||||
activation=relu
|
@ -1,9 +0,0 @@
|
||||
[conv]
|
||||
width=200
|
||||
height=200
|
||||
channels=3
|
||||
filters=10
|
||||
size=15
|
||||
stride=16
|
||||
activation=relu
|
||||
|
17
full.cfg
17
full.cfg
@ -1,17 +0,0 @@
|
||||
[conv]
|
||||
width=64
|
||||
height=64
|
||||
channels=3
|
||||
filters=10
|
||||
size=11
|
||||
stride=2
|
||||
activation=ramp
|
||||
|
||||
[maxpool]
|
||||
stride=2
|
||||
|
||||
[conn]
|
||||
output = 2
|
||||
activation=ramp
|
||||
|
||||
[softmax]
|
30
nist.cfg
30
nist.cfg
@ -1,30 +0,0 @@
|
||||
[conv]
|
||||
width=28
|
||||
height=28
|
||||
channels=1
|
||||
filters=20
|
||||
size=5
|
||||
stride=1
|
||||
activation=ramp
|
||||
|
||||
[maxpool]
|
||||
stride=2
|
||||
|
||||
[conv]
|
||||
filters=50
|
||||
size=5
|
||||
stride=1
|
||||
activation=ramp
|
||||
|
||||
[maxpool]
|
||||
stride=2
|
||||
|
||||
[conn]
|
||||
output = 500
|
||||
activation=ramp
|
||||
|
||||
[conn]
|
||||
output = 10
|
||||
activation=ramp
|
||||
|
||||
[softmax]
|
@ -1,14 +0,0 @@
|
||||
[conv]
|
||||
width=28
|
||||
height=28
|
||||
channels=1
|
||||
filters=20
|
||||
size=11
|
||||
stride=1
|
||||
activation=linear
|
||||
|
||||
[conn]
|
||||
output = 10
|
||||
activation=ramp
|
||||
|
||||
[softmax]
|
@ -4,6 +4,25 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
char *get_activation_string(ACTIVATION a)
|
||||
{
|
||||
switch(a){
|
||||
case SIGMOID:
|
||||
return "sigmoid";
|
||||
case RELU:
|
||||
return "relu";
|
||||
case RAMP:
|
||||
return "ramp";
|
||||
case LINEAR:
|
||||
return "linear";
|
||||
case TANH:
|
||||
return "tanh";
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return "relu";
|
||||
}
|
||||
|
||||
ACTIVATION get_activation(char *s)
|
||||
{
|
||||
if (strcmp(s, "sigmoid")==0) return SIGMOID;
|
||||
|
@ -7,6 +7,7 @@ typedef enum{
|
||||
|
||||
ACTIVATION get_activation(char *s);
|
||||
|
||||
char *get_activation_string(ACTIVATION a);
|
||||
float activate(float x, ACTIVATION a);
|
||||
float gradient(float x, ACTIVATION a);
|
||||
|
||||
|
@ -19,23 +19,46 @@ connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activa
|
||||
layer->delta = calloc(outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
float scale = 2./inputs;
|
||||
float scale = 1./inputs;
|
||||
for(i = 0; i < inputs*outputs; ++i)
|
||||
layer->weights[i] = rand_normal()*scale;
|
||||
layer->weights[i] = scale*(rand_uniform());
|
||||
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
layer->bias_adapt = calloc(outputs, sizeof(float));
|
||||
layer->bias_momentum = calloc(outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
for(i = 0; i < outputs; ++i)
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 0;
|
||||
layer->biases[i] = 1;
|
||||
|
||||
layer->activation = activation;
|
||||
return layer;
|
||||
}
|
||||
|
||||
/*
|
||||
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
float delta = layer.bias_updates[i];
|
||||
layer.bias_adapt[i] += delta*delta;
|
||||
layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
|
||||
layer.biases[i] += layer.bias_momentum[i];
|
||||
}
|
||||
for(i = 0; i < layer.outputs*layer.inputs; ++i){
|
||||
float delta = layer.weight_updates[i];
|
||||
layer.weight_adapt[i] += delta*delta;
|
||||
layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
|
||||
layer.weights[i] += layer.weight_momentum[i];
|
||||
}
|
||||
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
|
||||
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
|
||||
}
|
||||
*/
|
||||
|
||||
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
@ -65,6 +88,7 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
}
|
||||
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
|
@ -12,6 +12,9 @@ typedef struct{
|
||||
float *weight_updates;
|
||||
float *bias_updates;
|
||||
|
||||
float *weight_adapt;
|
||||
float *bias_adapt;
|
||||
|
||||
float *weight_momentum;
|
||||
float *bias_momentum;
|
||||
|
||||
|
@ -41,8 +41,8 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
|
||||
layer->biases = calloc(n, sizeof(float));
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
layer->bias_momentum = calloc(n, sizeof(float));
|
||||
float scale = 2./(size*size);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale;
|
||||
float scale = 1./(size*size*c);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
|
||||
for(i = 0; i < n; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 0;
|
||||
@ -65,6 +65,7 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = ((layer.h-layer.size)/layer.stride + 1)*
|
||||
@ -79,6 +80,11 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
|
||||
for(i = 0; i < m*n; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
|
||||
}
|
||||
|
||||
void gradient_delta_convolutional_layer(convolutional_layer layer)
|
||||
|
25
src/data.c
25
src/data.c
@ -30,7 +30,7 @@ void fill_truth(char *path, char **labels, int k, float *truth)
|
||||
}
|
||||
}
|
||||
|
||||
data load_data_image_paths(char **paths, int n, char **labels, int k)
|
||||
data load_data_image_paths(char **paths, int n, char **labels, int k, int h, int w)
|
||||
{
|
||||
int i;
|
||||
data d;
|
||||
@ -40,7 +40,7 @@ data load_data_image_paths(char **paths, int n, char **labels, int k)
|
||||
d.y = make_matrix(n, k);
|
||||
|
||||
for(i = 0; i < n; ++i){
|
||||
image im = load_image(paths[i]);
|
||||
image im = load_image(paths[i], h, w);
|
||||
d.X.vals[i] = im.data;
|
||||
d.X.cols = im.h*im.w*im.c;
|
||||
fill_truth(paths[i], labels, k, d.y.vals[i]);
|
||||
@ -48,11 +48,11 @@ data load_data_image_paths(char **paths, int n, char **labels, int k)
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k)
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
|
||||
{
|
||||
list *plist = get_paths(filename);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
data d = load_data_image_paths(paths, plist->size, labels, k);
|
||||
data d = load_data_image_paths(paths, plist->size, labels, k, h, w);
|
||||
free_list_contents(plist);
|
||||
free_list(plist);
|
||||
free(paths);
|
||||
@ -70,20 +70,20 @@ void free_data(data d)
|
||||
}
|
||||
}
|
||||
|
||||
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k)
|
||||
data load_data_image_pathfile_part(char *filename, int part, int total, char **labels, int k, int h, int w)
|
||||
{
|
||||
list *plist = get_paths(filename);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int start = part*plist->size/total;
|
||||
int end = (part+1)*plist->size/total;
|
||||
data d = load_data_image_paths(paths+start, end-start, labels, k);
|
||||
data d = load_data_image_paths(paths+start, end-start, labels, k, h, w);
|
||||
free_list_contents(plist);
|
||||
free_list(plist);
|
||||
free(paths);
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data_image_pathfile_random(char *filename, int n, char **labels, int k)
|
||||
data load_data_image_pathfile_random(char *filename, int n, char **labels, int k, int h, int w)
|
||||
{
|
||||
int i;
|
||||
list *plist = get_paths(filename);
|
||||
@ -92,8 +92,9 @@ data load_data_image_pathfile_random(char *filename, int n, char **labels, int k
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%plist->size;
|
||||
random_paths[i] = paths[index];
|
||||
if(i == 0) printf("%s\n", paths[index]);
|
||||
}
|
||||
data d = load_data_image_paths(random_paths, n, labels, k);
|
||||
data d = load_data_image_paths(random_paths, n, labels, k, h, w);
|
||||
free_list_contents(plist);
|
||||
free_list(plist);
|
||||
free(paths);
|
||||
@ -133,6 +134,14 @@ void randomize_data(data d)
|
||||
}
|
||||
}
|
||||
|
||||
void scale_data_rows(data d, float s)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < d.X.rows; ++i){
|
||||
scale_array(d.X.vals[i], d.X.cols, s);
|
||||
}
|
||||
}
|
||||
|
||||
void normalize_data_rows(data d)
|
||||
{
|
||||
int i;
|
||||
|
@ -10,14 +10,15 @@ typedef struct{
|
||||
} data;
|
||||
|
||||
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k);
|
||||
void free_data(data d);
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k);
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
|
||||
data load_data_image_pathfile_part(char *filename, int part, int total,
|
||||
char **labels, int k);
|
||||
data load_data_image_pathfile_random(char *filename, int n, char **labels, int k);
|
||||
char **labels, int k, int h, int w);
|
||||
data load_data_image_pathfile_random(char *filename, int n, char **labels,
|
||||
int k, int h, int w);
|
||||
data load_categorical_data_csv(char *filename, int target, int k);
|
||||
void normalize_data_rows(data d);
|
||||
void scale_data_rows(data d, float s);
|
||||
void randomize_data(data d);
|
||||
data *split_data(data d, int part, int total);
|
||||
|
||||
|
133
src/image.c
133
src/image.c
@ -242,8 +242,107 @@ image make_random_kernel(int size, int c, float scale)
|
||||
return out;
|
||||
}
|
||||
|
||||
// Returns a new image that is a cropped version (rectangular cut-out)
|
||||
// of the original image.
|
||||
IplImage* cropImage(const IplImage *img, const CvRect region)
|
||||
{
|
||||
IplImage *imageCropped;
|
||||
CvSize size;
|
||||
|
||||
image load_image(char *filename)
|
||||
if (img->width <= 0 || img->height <= 0
|
||||
|| region.width <= 0 || region.height <= 0) {
|
||||
//cerr << "ERROR in cropImage(): invalid dimensions." << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (img->depth != IPL_DEPTH_8U) {
|
||||
//cerr << "ERROR in cropImage(): image depth is not 8." << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Set the desired region of interest.
|
||||
cvSetImageROI((IplImage*)img, region);
|
||||
// Copy region of interest into a new iplImage and return it.
|
||||
size.width = region.width;
|
||||
size.height = region.height;
|
||||
imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels);
|
||||
cvCopy(img, imageCropped,NULL); // Copy just the region.
|
||||
|
||||
return imageCropped;
|
||||
}
|
||||
|
||||
// Creates a new image copy that is of a desired size. The aspect ratio will
|
||||
// be kept constant if 'keepAspectRatio' is true, by cropping undesired parts
|
||||
// so that only pixels of the original image are shown, instead of adding
|
||||
// extra blank space.
|
||||
// Remember to free the new image later.
|
||||
IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth,
|
||||
int keepAspectRatio)
|
||||
{
|
||||
IplImage *outImg = 0;
|
||||
int origWidth = 0;
|
||||
int origHeight = 0;
|
||||
if (origImg) {
|
||||
origWidth = origImg->width;
|
||||
origHeight = origImg->height;
|
||||
}
|
||||
if (newWidth <= 0 || newHeight <= 0 || origImg == 0
|
||||
|| origWidth <= 0 || origHeight <= 0) {
|
||||
//cerr << "ERROR: Bad desired image size of " << newWidth
|
||||
// << "x" << newHeight << " in resizeImage().\n";
|
||||
exit(1);
|
||||
}
|
||||
|
||||
if (keepAspectRatio) {
|
||||
// Resize the image without changing its aspect ratio,
|
||||
// by cropping off the edges and enlarging the middle section.
|
||||
CvRect r;
|
||||
// input aspect ratio
|
||||
float origAspect = (origWidth / (float)origHeight);
|
||||
// output aspect ratio
|
||||
float newAspect = (newWidth / (float)newHeight);
|
||||
// crop width to be origHeight * newAspect
|
||||
if (origAspect > newAspect) {
|
||||
int tw = (origHeight * newWidth) / newHeight;
|
||||
r = cvRect((origWidth - tw)/2, 0, tw, origHeight);
|
||||
}
|
||||
else { // crop height to be origWidth / newAspect
|
||||
int th = (origWidth * newHeight) / newWidth;
|
||||
r = cvRect(0, (origHeight - th)/2, origWidth, th);
|
||||
}
|
||||
IplImage *croppedImg = cropImage(origImg, r);
|
||||
|
||||
// Call this function again, with the new aspect ratio image.
|
||||
// Will do a scaled image resize with the correct aspect ratio.
|
||||
outImg = resizeImage(croppedImg, newHeight, newWidth, 0);
|
||||
cvReleaseImage( &croppedImg );
|
||||
|
||||
}
|
||||
else {
|
||||
|
||||
// Scale the image to the new dimensions,
|
||||
// even if the aspect ratio will be changed.
|
||||
outImg = cvCreateImage(cvSize(newWidth, newHeight),
|
||||
origImg->depth, origImg->nChannels);
|
||||
if (newWidth > origImg->width && newHeight > origImg->height) {
|
||||
// Make the image larger
|
||||
cvResetImageROI((IplImage*)origImg);
|
||||
// CV_INTER_LINEAR: good at enlarging.
|
||||
// CV_INTER_CUBIC: good at enlarging.
|
||||
cvResize(origImg, outImg, CV_INTER_LINEAR);
|
||||
}
|
||||
else {
|
||||
// Make the image smaller
|
||||
cvResetImageROI((IplImage*)origImg);
|
||||
// CV_INTER_AREA: good at shrinking (decimation) only.
|
||||
cvResize(origImg, outImg, CV_INTER_AREA);
|
||||
}
|
||||
|
||||
}
|
||||
return outImg;
|
||||
}
|
||||
|
||||
image load_image(char *filename, int h, int w)
|
||||
{
|
||||
IplImage* src = 0;
|
||||
if( (src = cvLoadImage(filename,-1)) == 0 )
|
||||
@ -251,10 +350,14 @@ image load_image(char *filename)
|
||||
printf("Cannot load file image %s\n", filename);
|
||||
exit(0);
|
||||
}
|
||||
cvShowImage("Orig", src);
|
||||
IplImage *resized = resizeImage(src, h, w, 1);
|
||||
cvShowImage("Sized", resized);
|
||||
cvWaitKey(0);
|
||||
cvReleaseImage(&src);
|
||||
src = resized;
|
||||
unsigned char *data = (unsigned char *)src->imageData;
|
||||
int c = src->nChannels;
|
||||
int h = src->height;
|
||||
int w = src->width;
|
||||
int step = src->widthStep;
|
||||
image out = make_image(h,w,c);
|
||||
int i, j, k, count=0;;
|
||||
@ -363,14 +466,14 @@ void convolve(image m, image kernel, int stride, int channel, image out, int edg
|
||||
two_d_convolve(m, i, kernel, i, stride, out, channel, edge);
|
||||
}
|
||||
/*
|
||||
int j;
|
||||
for(i = 0; i < m.h; i += stride){
|
||||
for(j = 0; j < m.w; j += stride){
|
||||
float val = single_convolve(m, kernel, i, j);
|
||||
set_pixel(out, i/stride, j/stride, channel, val);
|
||||
}
|
||||
}
|
||||
*/
|
||||
int j;
|
||||
for(i = 0; i < m.h; i += stride){
|
||||
for(j = 0; j < m.w; j += stride){
|
||||
float val = single_convolve(m, kernel, i, j);
|
||||
set_pixel(out, i/stride, j/stride, channel, val);
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void upsample_image(image m, int stride, image out)
|
||||
@ -422,10 +525,10 @@ void kernel_update(image m, image update, int stride, int channel, image out, in
|
||||
}
|
||||
}
|
||||
/*
|
||||
for(i = 0; i < update.h*update.w*update.c; ++i){
|
||||
update.data[i] /= (m.h/stride)*(m.w/stride);
|
||||
}
|
||||
*/
|
||||
for(i = 0; i < update.h*update.w*update.c; ++i){
|
||||
update.data[i] /= (m.h/stride)*(m.w/stride);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void single_back_convolve(image m, image kernel, int x, int y, float val)
|
||||
|
@ -33,13 +33,12 @@ image make_random_image(int h, int w, int c);
|
||||
image make_random_kernel(int size, int c, float scale);
|
||||
image float_to_image(int h, int w, int c, float *data);
|
||||
image copy_image(image p);
|
||||
image load_image(char *filename);
|
||||
image load_image(char *filename, int h, int w);
|
||||
|
||||
float get_pixel(image m, int x, int y, int c);
|
||||
float get_pixel_extend(image m, int x, int y, int c);
|
||||
void set_pixel(image m, int x, int y, int c, float val);
|
||||
|
||||
|
||||
image get_image_layer(image m, int l);
|
||||
|
||||
void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge);
|
||||
|
@ -159,7 +159,7 @@ void time_random_matrix(int TA, int TB, int m, int k, int n)
|
||||
gemm(TA,TB,m,n,k,1,a,k,b,n,1,c,n);
|
||||
}
|
||||
end = clock();
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (double)(end-start)/CLOCKS_PER_SEC);
|
||||
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
||||
}
|
||||
|
||||
void test_blas()
|
||||
|
@ -21,6 +21,77 @@ network make_network(int n)
|
||||
return net;
|
||||
}
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"activation=%s\n",
|
||||
l->h, l->w, l->c,
|
||||
l->n, l->size, l->stride,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n"
|
||||
"input=%d\n"
|
||||
"output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->inputs, l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"stride=%d\n\n",
|
||||
l->h, l->w, l->c,
|
||||
l->stride);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n"
|
||||
"input=%d\n\n",
|
||||
l->inputs);
|
||||
}
|
||||
|
||||
void save_network(network net, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "w");
|
||||
if(!fp) file_error(filename);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL)
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]);
|
||||
else if(net.types[i] == CONNECTED)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i]);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i]);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void forward_network(network net, float *input)
|
||||
{
|
||||
int i;
|
||||
@ -64,7 +135,7 @@ void update_network(network net, float step, float momentum, float decay)
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, step, momentum, 0);
|
||||
update_connected_layer(layer, step, momentum, decay);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -121,9 +192,11 @@ float calculate_error_network(network net, float *truth)
|
||||
float *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
printf("%f, ", out[i]);
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
printf("\n");
|
||||
return sum;
|
||||
}
|
||||
|
||||
@ -173,25 +246,31 @@ float backward_network(network net, float *input, float *truth)
|
||||
|
||||
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
|
||||
{
|
||||
forward_network(net, x);
|
||||
int class = get_predicted_class_network(net);
|
||||
float error = backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
forward_network(net, x);
|
||||
//int class = get_predicted_class_network(net);
|
||||
float error = backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
}
|
||||
|
||||
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
int i;
|
||||
float error = 0;
|
||||
int correct = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
//if((i+1)%10 == 0){
|
||||
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
|
||||
//}
|
||||
}
|
||||
printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/n;
|
||||
}
|
||||
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
||||
|
@ -40,6 +40,7 @@ image get_network_image_layer(network net, int i);
|
||||
int get_predicted_class_network(network net);
|
||||
void print_network(network net);
|
||||
void visualize_network(network net);
|
||||
void save_network(network net, char *filename);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -3,12 +3,6 @@
|
||||
#include <string.h>
|
||||
#include "option_list.h"
|
||||
|
||||
typedef struct{
|
||||
char *key;
|
||||
char *val;
|
||||
int used;
|
||||
} kvp;
|
||||
|
||||
void option_insert(list *l, char *key, char *val)
|
||||
{
|
||||
kvp *p = malloc(sizeof(kvp));
|
||||
@ -47,7 +41,7 @@ char *option_find_str(list *l, char *key, char *def)
|
||||
{
|
||||
char *v = option_find(l, key);
|
||||
if(v) return v;
|
||||
fprintf(stderr, "%s: Using default '%s'\n", key, def);
|
||||
if(def) fprintf(stderr, "%s: Using default '%s'\n", key, def);
|
||||
return def;
|
||||
}
|
||||
|
||||
|
@ -2,6 +2,13 @@
|
||||
#define OPTION_LIST_H
|
||||
#include "list.h"
|
||||
|
||||
typedef struct{
|
||||
char *key;
|
||||
char *val;
|
||||
int used;
|
||||
} kvp;
|
||||
|
||||
|
||||
void option_insert(list *l, char *key, char *val);
|
||||
char *option_find(list *l, char *key);
|
||||
char *option_find_str(list *l, char *key, char *def);
|
||||
|
187
src/parser.c
187
src/parser.c
@ -23,6 +23,130 @@ int is_maxpool(section *s);
|
||||
int is_softmax(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
void free_section(section *s)
|
||||
{
|
||||
free(s->type);
|
||||
node *n = s->options->front;
|
||||
while(n){
|
||||
kvp *pair = (kvp *)n->val;
|
||||
free(pair->key);
|
||||
free(pair);
|
||||
node *next = n->next;
|
||||
free(n);
|
||||
n = next;
|
||||
}
|
||||
free(s->options);
|
||||
free(s);
|
||||
}
|
||||
|
||||
convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
{
|
||||
int i;
|
||||
int h,w,c;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
char *next = data;
|
||||
for(i = 0; i < n; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->biases[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
for(i = 0; i < c*n*size*size; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->filters[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
}
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
connected_layer *parse_connected(list *options, network net, int count)
|
||||
{
|
||||
int i;
|
||||
int input;
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
char *next = data;
|
||||
for(i = 0; i < output; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->biases[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
for(i = 0; i < input*output; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->weights[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
}
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
softmax_layer *parse_softmax(list *options, network net, int count)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
{
|
||||
int h,w,c;
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
network parse_network_cfg(char *filename)
|
||||
{
|
||||
@ -35,78 +159,29 @@ network parse_network_cfg(char *filename)
|
||||
section *s = (section *)n->val;
|
||||
list *options = s->options;
|
||||
if(is_convolutional(s)){
|
||||
int h,w,c;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
convolutional_layer *layer = parse_convolutional(options, net, count);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}
|
||||
else if(is_connected(s)){
|
||||
int input;
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, net, count);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else if(is_softmax(s)){
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
softmax_layer *layer = parse_softmax(options, net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else if(is_maxpool(s)){
|
||||
int h,w,c;
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
//char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
maxpool_layer *layer = parse_maxpool(options, net, count);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
free_section(s);
|
||||
++count;
|
||||
n = n->next;
|
||||
}
|
||||
free_list(sections);
|
||||
net.outputs = get_network_output_size(net);
|
||||
net.output = get_network_output(net);
|
||||
return net;
|
||||
|
@ -36,8 +36,11 @@ void forward_softmax_layer(const softmax_layer layer, float *input)
|
||||
}
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
sum += exp(input[i]-largest);
|
||||
printf("%f, ", input[i]);
|
||||
}
|
||||
sum = largest+log(sum);
|
||||
printf("\n");
|
||||
if(sum) sum = largest+log(sum);
|
||||
else sum = largest-100;
|
||||
for(i = 0; i < layer.inputs; ++i){
|
||||
layer.output[i] = exp(input[i]-sum);
|
||||
}
|
||||
|
81
src/tests.c
81
src/tests.c
@ -19,7 +19,7 @@
|
||||
|
||||
void test_convolve()
|
||||
{
|
||||
image dog = load_image("dog.jpg");
|
||||
image dog = load_image("dog.jpg",300,400);
|
||||
printf("dog channels %d\n", dog.c);
|
||||
image kernel = make_random_image(3,3,dog.c);
|
||||
image edge = make_image(dog.h, dog.w, 1);
|
||||
@ -35,7 +35,7 @@ void test_convolve()
|
||||
|
||||
void test_convolve_matrix()
|
||||
{
|
||||
image dog = load_image("dog.jpg");
|
||||
image dog = load_image("dog.jpg",300,400);
|
||||
printf("dog channels %d\n", dog.c);
|
||||
|
||||
int size = 11;
|
||||
@ -64,7 +64,7 @@ void test_convolve_matrix()
|
||||
|
||||
void test_color()
|
||||
{
|
||||
image dog = load_image("test_color.png");
|
||||
image dog = load_image("test_color.png", 300, 400);
|
||||
show_image_layers(dog, "Test Color");
|
||||
}
|
||||
|
||||
@ -124,13 +124,13 @@ void verify_convolutional_layer()
|
||||
|
||||
void test_load()
|
||||
{
|
||||
image dog = load_image("dog.jpg");
|
||||
image dog = load_image("dog.jpg", 300, 400);
|
||||
show_image(dog, "Test Load");
|
||||
show_image_layers(dog, "Test Load");
|
||||
}
|
||||
void test_upsample()
|
||||
{
|
||||
image dog = load_image("dog.jpg");
|
||||
image dog = load_image("dog.jpg", 300, 400);
|
||||
int n = 3;
|
||||
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
||||
upsample_image(dog, n, up);
|
||||
@ -141,7 +141,7 @@ void test_upsample()
|
||||
void test_rotate()
|
||||
{
|
||||
int i;
|
||||
image dog = load_image("dog.jpg");
|
||||
image dog = load_image("dog.jpg",300,400);
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i < 1001; ++i){
|
||||
rotate_image(dog);
|
||||
@ -184,24 +184,39 @@ void test_parser()
|
||||
void test_data()
|
||||
{
|
||||
char *labels[] = {"cat","dog"};
|
||||
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
|
||||
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
|
||||
free_data(train);
|
||||
}
|
||||
|
||||
void test_full()
|
||||
{
|
||||
network net = parse_network_cfg("full.cfg");
|
||||
srand(0);
|
||||
int i = 0;
|
||||
srand(2222222);
|
||||
int i = 800;
|
||||
char *labels[] = {"cat","dog"};
|
||||
float lr = .00001;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
while(i++ < 1000 || 1){
|
||||
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
|
||||
train_network(net, train, lr, momentum, decay);
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256);
|
||||
image im = float_to_image(256, 256, 3,train.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
cvWaitKey(100);
|
||||
//scale_data_rows(train, 1./255.);
|
||||
normalize_data_rows(train);
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, 100, lr, momentum, decay);
|
||||
end = clock();
|
||||
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
free_data(train);
|
||||
printf("Round %d\n", i);
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "backup_%d.cfg", i);
|
||||
//save_network(net, buff);
|
||||
}
|
||||
//lr *= .99;
|
||||
}
|
||||
}
|
||||
|
||||
@ -218,7 +233,7 @@ void test_nist()
|
||||
int count = 0;
|
||||
float lr = .0005;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
float decay = 0.001;
|
||||
clock_t start = clock(), end;
|
||||
while(++count <= 100){
|
||||
//visualize_network(net);
|
||||
@ -227,7 +242,7 @@ void test_nist()
|
||||
end = clock();
|
||||
printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
|
||||
start=end;
|
||||
cvWaitKey(100);
|
||||
//cvWaitKey(100);
|
||||
//lr /= 2;
|
||||
if(count%5 == 0){
|
||||
float train_acc = network_accuracy(net, train);
|
||||
@ -235,7 +250,7 @@ void test_nist()
|
||||
float test_acc = network_accuracy(net, test);
|
||||
fprintf(stderr, "TEST: %f\n\n", test_acc);
|
||||
printf("%d, %f, %f\n", count, train_acc, test_acc);
|
||||
lr *= .5;
|
||||
//lr *= .5;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -345,7 +360,38 @@ void test_im2row()
|
||||
int i;
|
||||
for(i = 0; i < 1000; ++i){
|
||||
im2col_cpu(test.data, c, h, w, size, stride, matrix);
|
||||
image render = float_to_image(mh, mw, mc, matrix);
|
||||
//image render = float_to_image(mh, mw, mc, matrix);
|
||||
}
|
||||
}
|
||||
|
||||
void train_VOC()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/voc_backup_ramp_80.cfg");
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
|
||||
float lr = .00001;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
while(i++ < 1000 || 1){
|
||||
visualize_network(net);
|
||||
cvWaitKey(100);
|
||||
data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
|
||||
image im = float_to_image(300, 400, 3,train.X.vals[0]);
|
||||
show_image(im, "input");
|
||||
cvWaitKey(100);
|
||||
normalize_data_rows(train);
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
|
||||
end = clock();
|
||||
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "cfg/voc_backup_ramp_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
//lr *= .99;
|
||||
}
|
||||
}
|
||||
|
||||
@ -358,8 +404,9 @@ int main()
|
||||
// test_im2row();
|
||||
//test_split();
|
||||
//test_ensemble();
|
||||
test_nist();
|
||||
//test_nist();
|
||||
//test_full();
|
||||
train_VOC();
|
||||
//test_random_preprocess();
|
||||
//test_random_classify();
|
||||
//test_parser();
|
||||
|
@ -216,6 +216,10 @@ float rand_normal()
|
||||
for(i = 0; i < 12; ++i) sum += (float)rand()/RAND_MAX;
|
||||
return sum-6.;
|
||||
}
|
||||
float rand_uniform()
|
||||
{
|
||||
return (float)rand()/RAND_MAX;
|
||||
}
|
||||
|
||||
float **one_hot_encode(float *a, int n, int k)
|
||||
{
|
||||
|
@ -20,6 +20,7 @@ void translate_array(float *a, int n, float s);
|
||||
int max_index(float *a, int n);
|
||||
float constrain(float a, float max);
|
||||
float rand_normal();
|
||||
float rand_uniform();
|
||||
float mean_array(float *a, int n);
|
||||
float variance_array(float *a, int n);
|
||||
float **one_hot_encode(float *a, int n, int k);
|
||||
|
37
test.cfg
37
test.cfg
@ -1,37 +0,0 @@
|
||||
[conv]
|
||||
width=200
|
||||
height=200
|
||||
channels=3
|
||||
filters=10
|
||||
size=15
|
||||
stride=16
|
||||
activation=relu
|
||||
|
||||
#[maxpool]
|
||||
#stride=2
|
||||
|
||||
#[conv]
|
||||
#filters=10
|
||||
#size=10
|
||||
#stride=4
|
||||
#activation=relu
|
||||
|
||||
#[maxpool]
|
||||
#stride=2
|
||||
|
||||
#[conv]
|
||||
#filters=10
|
||||
#size=10
|
||||
#stride=4
|
||||
#activation=relu
|
||||
|
||||
#[maxpool]
|
||||
#stride=2
|
||||
|
||||
[conn]
|
||||
output = 10
|
||||
activation=relu
|
||||
|
||||
[conn]
|
||||
output = 1
|
||||
activation=relu
|
Loading…
Reference in New Issue
Block a user