mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Training on VOC
This commit is contained in:
@ -21,6 +21,77 @@ network make_network(int n)
|
||||
return net;
|
||||
}
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"activation=%s\n",
|
||||
l->h, l->w, l->c,
|
||||
l->n, l->size, l->stride,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l)
|
||||
{
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n"
|
||||
"input=%d\n"
|
||||
"output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->inputs, l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "data=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n"
|
||||
"height=%d\n"
|
||||
"width=%d\n"
|
||||
"channels=%d\n"
|
||||
"stride=%d\n\n",
|
||||
l->h, l->w, l->c,
|
||||
l->stride);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n"
|
||||
"input=%d\n\n",
|
||||
l->inputs);
|
||||
}
|
||||
|
||||
void save_network(network net, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "w");
|
||||
if(!fp) file_error(filename);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL)
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]);
|
||||
else if(net.types[i] == CONNECTED)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i]);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i]);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void forward_network(network net, float *input)
|
||||
{
|
||||
int i;
|
||||
@ -64,7 +135,7 @@ void update_network(network net, float step, float momentum, float decay)
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, step, momentum, 0);
|
||||
update_connected_layer(layer, step, momentum, decay);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -121,9 +192,11 @@ float calculate_error_network(network net, float *truth)
|
||||
float *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
printf("%f, ", out[i]);
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
printf("\n");
|
||||
return sum;
|
||||
}
|
||||
|
||||
@ -173,25 +246,31 @@ float backward_network(network net, float *input, float *truth)
|
||||
|
||||
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay)
|
||||
{
|
||||
forward_network(net, x);
|
||||
int class = get_predicted_class_network(net);
|
||||
float error = backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
forward_network(net, x);
|
||||
//int class = get_predicted_class_network(net);
|
||||
float error = backward_network(net, x, y);
|
||||
update_network(net, step, momentum, decay);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
}
|
||||
|
||||
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
int i;
|
||||
float error = 0;
|
||||
int correct = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
//if((i+1)%10 == 0){
|
||||
// printf("%d: %f\n", (i+1), (float)correct/(i+1));
|
||||
//}
|
||||
}
|
||||
printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/n;
|
||||
}
|
||||
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
||||
|
Reference in New Issue
Block a user