mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Training on VOC
This commit is contained in:
187
src/parser.c
187
src/parser.c
@ -23,6 +23,130 @@ int is_maxpool(section *s);
|
||||
int is_softmax(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
void free_section(section *s)
|
||||
{
|
||||
free(s->type);
|
||||
node *n = s->options->front;
|
||||
while(n){
|
||||
kvp *pair = (kvp *)n->val;
|
||||
free(pair->key);
|
||||
free(pair);
|
||||
node *next = n->next;
|
||||
free(n);
|
||||
n = next;
|
||||
}
|
||||
free(s->options);
|
||||
free(s);
|
||||
}
|
||||
|
||||
convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
{
|
||||
int i;
|
||||
int h,w,c;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
char *next = data;
|
||||
for(i = 0; i < n; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->biases[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
for(i = 0; i < c*n*size*size; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->filters[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
}
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
connected_layer *parse_connected(list *options, network net, int count)
|
||||
{
|
||||
int i;
|
||||
int input;
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
char *next = data;
|
||||
for(i = 0; i < output; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->biases[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
for(i = 0; i < input*output; ++i){
|
||||
while(*++next !='\0' && *next != ',');
|
||||
*next = '\0';
|
||||
sscanf(curr, "%g", &layer->weights[i]);
|
||||
curr = next+1;
|
||||
}
|
||||
}
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
softmax_layer *parse_softmax(list *options, network net, int count)
|
||||
{
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
{
|
||||
int h,w,c;
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
network parse_network_cfg(char *filename)
|
||||
{
|
||||
@ -35,78 +159,29 @@ network parse_network_cfg(char *filename)
|
||||
section *s = (section *)n->val;
|
||||
list *options = s->options;
|
||||
if(is_convolutional(s)){
|
||||
int h,w,c;
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
convolutional_layer *layer = parse_convolutional(options, net, count);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}
|
||||
else if(is_connected(s)){
|
||||
int input;
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, net, count);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else if(is_softmax(s)){
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
softmax_layer *layer = parse_softmax(options, net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else if(is_maxpool(s)){
|
||||
int h,w,c;
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
//char *activation_s = option_find_str(options, "activation", "sigmoid");
|
||||
if(count == 0){
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
w = m.w;
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
maxpool_layer *layer = parse_maxpool(options, net, count);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
option_unused(options);
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
free_section(s);
|
||||
++count;
|
||||
n = n->next;
|
||||
}
|
||||
free_list(sections);
|
||||
net.outputs = get_network_output_size(net);
|
||||
net.output = get_network_output(net);
|
||||
return net;
|
||||
|
Reference in New Issue
Block a user