softmax on gpu

This commit is contained in:
Joseph Redmon 2014-10-21 14:49:18 -07:00
parent 9b3c7136f3
commit 158bb1bee9
17 changed files with 440 additions and 97 deletions

View File

@ -1,5 +1,5 @@
CC=gcc
GPU=0
GPU=1
COMMON=-Wall -Wfatal-errors `pkg-config --cflags opencv` -I/usr/local/cuda/include/
ifeq ($(GPU), 1)
COMMON+=-DGPU

View File

@ -281,15 +281,17 @@ void test_data()
void train_assira()
{
network net = parse_network_cfg("cfg/assira.cfg");
int imgs = 1000/net.batch+1;
//imgs = 1;
srand(2222222);
int i = 0;
char *labels[] = {"cat","dog"};
while(1){
i += 1000;
data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256);
data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
normalize_data_rows(train);
clock_t start = clock(), end;
float loss = train_network_sgd_gpu(net, train, 10);
float loss = train_network_sgd_gpu(net, train, imgs);
end = clock();
printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC );
free_data(train);
@ -358,7 +360,7 @@ void train_cifar10()
data train = load_all_cifar10();
while(++count <= 10000){
clock_t start = clock(), end;
float loss = train_network_sgd_gpu(net, train, iters);
float loss = train_network_sgd(net, train, iters);
end = clock();
//visualize_network(net);
//cvWaitKey(5000);
@ -369,7 +371,7 @@ void train_cifar10()
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
char buff[256];
sprintf(buff, "/home/pjreddie/cifar/cifar2_%d.cfg", count);
sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
save_network(net, buff);
}else{
printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
@ -435,7 +437,7 @@ void train_nist()
int iters = 10000/net.batch;
while(++count <= 2000){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
float loss = train_network_sgd_gpu(net, train, iters);
end = clock();
float test_acc = network_accuracy(net, test);
//float test_acc = 0;
@ -893,7 +895,8 @@ void test_distribution()
int main(int argc, char *argv[])
{
//train_assira();
//test_blas();
train_assira();
//test_distribution();
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
@ -907,7 +910,7 @@ int main(int argc, char *argv[])
//test_ensemble();
//test_nist_single();
//test_nist();
train_nist();
//train_nist();
//test_convolutional_layer();
//test_col2im();
//test_cifar10();

View File

@ -108,6 +108,12 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
#ifdef GPU
void pull_connected_layer(connected_layer layer)
{
cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
}
void update_connected_layer_gpu(connected_layer layer)
{
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
@ -116,6 +122,7 @@ void update_connected_layer_gpu(connected_layer layer)
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
pull_connected_layer(layer);
}
void forward_connected_layer_gpu(connected_layer layer, cl_mem input)

View File

@ -2,6 +2,7 @@
#include "utils.h"
#include "mini_blas.h"
#include <stdio.h>
#include <time.h>
int convolutional_out_height(convolutional_layer layer)
{
@ -341,6 +342,8 @@ void bias_output_gpu(const convolutional_layer layer)
check_error(cl);
}
//#define TIMEIT
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
{
int i;
@ -349,10 +352,21 @@ void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
int n = convolutional_out_height(layer)*
convolutional_out_width(layer);
//cl_write_array(layer.filters_cl, layer.filters, m*k);
//cl_write_array(layer.biases_cl, layer.biases, m);
bias_output_gpu(layer);
#ifdef TIMEIT
clock_t time = clock();
printf("Forward\n");
#endif
im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
#ifdef TIMEIT
clFinish(cl.queue);
printf("Im2col %f\n", sec(clock()-time));
time = clock();
#endif
for(i = 0; i < layer.batch; ++i){
cl_mem a = layer.filters_cl;
cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
@ -361,8 +375,14 @@ void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
clReleaseMemObject(b);
clReleaseMemObject(c);
}
#ifdef TIMEIT
clFinish(cl.queue);
printf("Gemm %f\n", sec(clock()-time));
#endif
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
//cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
#ifdef TIMEIT
cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
#endif
}
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
@ -408,6 +428,12 @@ void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl
}
}
void pull_convolutional_layer(convolutional_layer layer)
{
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
cl_read_array(layer.biases_cl, layer.biases, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)
{
int size = layer.size*layer.size*layer.c*layer.n;
@ -417,6 +443,7 @@ void update_convolutional_layer_gpu(convolutional_layer layer)
scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
pull_convolutional_layer(layer);
}

View File

@ -1,4 +1,5 @@
#include "mini_blas.h"
#include <clBLAS.h>
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
float *A, int lda,
@ -35,7 +36,7 @@ void gemm_nt(int M, int N, int K, float ALPHA,
for(j = 0; j < N; ++j){
register float sum = 0;
for(k = 0; k < K; ++k){
sum += ALPHA*A[i*lda+k]*B[k+j*ldb];
sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
}
C[i*ldc+j] += sum;
}
@ -57,6 +58,7 @@ void gemm_tn(int M, int N, int K, float ALPHA,
}
}
}
void gemm_tt(int M, int N, int K, float ALPHA,
float *A, int lda,
float *B, int ldb,
@ -65,9 +67,11 @@ void gemm_tt(int M, int N, int K, float ALPHA,
int i,j,k;
for(i = 0; i < M; ++i){
for(j = 0; j < N; ++j){
register float sum = 0;
for(k = 0; k < K; ++k){
C[i*ldc+j] += ALPHA*A[i+k*lda]*B[k+j*ldb];
sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
}
C[i*ldc+j] += sum;
}
}
}
@ -121,13 +125,31 @@ cl_kernel get_gemm_kernel()
return gemm_kernel;
}
void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA,
cl_mem A_gpu, int lda,
cl_mem B_gpu, int ldb,
float BETA,
cl_mem C_gpu, int ldc);
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
cl_mem A_gpu, int lda,
cl_mem B_gpu, int ldb,
float BETA,
cl_mem C_gpu, int ldc)
{
//printf("gpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
cl_setup();
//cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event);
//check_error(cl);
gemm_ongpu_old(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
}
void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA,
cl_mem A_gpu, int lda,
cl_mem B_gpu, int ldb,
float BETA,
cl_mem C_gpu, int ldc)
{
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
cl_setup();
cl_kernel gemm_kernel = get_gemm_kernel();
cl_command_queue queue = cl.queue;
@ -213,11 +235,11 @@ void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
float *c = random_matrix(m,n);
int i;
clock_t start = clock(), end;
for(i = 0; i<1000; ++i){
for(i = 0; i<10; ++i){
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
}
end = clock();
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
free(a);
free(b);
free(c);
@ -270,7 +292,7 @@ void test_gpu_blas()
test_gpu_accuracy(0,1,1000,10,100);
test_gpu_accuracy(1,1,1000,10,100);
/*
/*
time_gpu_random_matrix(0,0,1000,1000,100);
time_random_matrix(0,0,1000,1000,100);

View File

@ -27,9 +27,15 @@ maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int
layer->c = c;
layer->size = size;
layer->stride = stride;
layer->indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int));
layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
int output_size = ((h-1)/stride+1) * ((w-1)/stride+1) * c * batch;
layer->indexes = calloc(output_size, sizeof(int));
layer->output = calloc(output_size, sizeof(float));
layer->delta = calloc(output_size, sizeof(float));
#ifdef GPU
layer->indexes_cl = cl_make_int_array(layer->indexes, output_size);
layer->output_cl = cl_make_array(layer->output, output_size);
layer->delta_cl = cl_make_array(layer->delta, output_size);
#endif
return layer;
}
@ -66,7 +72,7 @@ void forward_maxpool_layer(const maxpool_layer layer, float *input)
int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
int valid = (cur_h >= 0 && cur_h < layer.h &&
cur_w >= 0 && cur_w < layer.w);
float val = (valid != 0) ? input[index] : -INFINITY;
float val = (valid != 0) ? input[index] : -FLT_MAX;
max_i = (val > max) ? index : max_i;
max = (val > max) ? val : max;
}
@ -79,7 +85,7 @@ void forward_maxpool_layer(const maxpool_layer layer, float *input)
}
}
void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta)
void backward_maxpool_layer(const maxpool_layer layer, float *delta)
{
int i;
int h = (layer.h-1)/layer.stride + 1;
@ -92,3 +98,76 @@ void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delt
}
}
#ifdef GPU
cl_kernel get_forward_kernel()
{
static int init = 0;
static cl_kernel kernel;
if(!init){
kernel = get_kernel("src/maxpool_layer.cl", "forward", 0);
init = 1;
}
return kernel;
}
void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input)
{
int h = (layer.h-1)/layer.stride + 1;
int w = (layer.w-1)/layer.stride + 1;
int c = layer.c;
cl_setup();
cl_kernel kernel = get_forward_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
check_error(cl);
const size_t global_size[] = {h*w*c*layer.batch};
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
check_error(cl);
}
cl_kernel get_backward_kernel()
{
static int init = 0;
static cl_kernel kernel;
if(!init){
kernel = get_kernel("src/maxpool_layer.cl", "backward", 0);
init = 1;
}
return kernel;
}
void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta)
{
cl_setup();
cl_kernel kernel = get_backward_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.h), (void*) &layer.h);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.w), (void*) &layer.w);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.c), (void*) &layer.c);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.stride), (void*) &layer.stride);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.size), (void*) &layer.size);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
cl.error = clSetKernelArg(kernel, i++, sizeof(delta), (void*) &delta);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.indexes_cl), (void*) &layer.indexes_cl);
check_error(cl);
const size_t global_size[] = {layer.h*layer.w*layer.c*layer.batch};
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
check_error(cl);
}
#endif

73
src/maxpool_layer.cl Normal file
View File

@ -0,0 +1,73 @@
__kernel void forward(int in_h, int in_w, int in_c, int stride, int size, __global float *input, __global float *output, __global int *indexes)
{
int h = (in_h-1)/stride + 1;
int w = (in_w-1)/stride + 1;
int c = in_c;
int id = get_global_id(0);
int j = id % w;
id /= w;
int i = id % h;
id /= h;
int k = id % c;
id /= c;
int b = id;
int w_offset = (-size-1)/2 + 1;
int h_offset = (-size-1)/2 + 1;
int out_index = j + w*(i + h*(k + c*b));
float max = -INFINITY;
int max_i = -1;
int l, m;
for(l = 0; l < size; ++l){
for(m = 0; m < size; ++m){
int cur_h = h_offset + i*stride + l;
int cur_w = w_offset + j*stride + m;
int index = cur_w + in_w*(cur_h + in_h*(k + b*in_c));
int valid = (cur_h >= 0 && cur_h < in_h &&
cur_w >= 0 && cur_w < in_w);
float val = (valid != 0) ? input[index] : -INFINITY;
max_i = (val > max) ? index : max_i;
max = (val > max) ? val : max;
}
}
output[out_index] = max;
indexes[out_index] = max_i;
}
__kernel void backward(int in_h, int in_w, int in_c, int stride, int size, __global float *delta, __global float *prev_delta, __global int *indexes)
{
int h = (in_h-1)/stride + 1;
int w = (in_w-1)/stride + 1;
int c = in_c;
int area = (size-1)/stride;
int id = get_global_id(0);
int index = id;
int j = id % in_w;
id /= in_w;
int i = id % in_h;
id /= in_h;
int k = id % in_c;
id /= in_c;
int b = id;
int w_offset = (-size-1)/2 + 1;
int h_offset = (-size-1)/2 + 1;
float d = 0;
int l, m;
for(l = -area; l < area+1; ++l){
for(m = -area; m < area+1; ++m){
int out_w = (j-w_offset)/stride + m;
int out_h = (i-h_offset)/stride + l;
int out_index = out_w + w*(out_h + h*(k + c*b));
int valid = (out_w >= 0 && out_w < w &&
out_h >= 0 && out_h < h);
d += (valid && indexes[out_index] == index) ? delta[out_index] : 0;
}
}
prev_delta[index] = d;
}

View File

@ -2,6 +2,7 @@
#define MAXPOOL_LAYER_H
#include "image.h"
#include "opencl.h"
typedef struct {
int batch;
@ -11,13 +12,23 @@ typedef struct {
int *indexes;
float *delta;
float *output;
#ifdef GPU
cl_mem indexes_cl;
cl_mem output_cl;
cl_mem delta_cl;
#endif
} maxpool_layer;
image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
void forward_maxpool_layer(const maxpool_layer layer, float *input);
void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delta);
void backward_maxpool_layer(const maxpool_layer layer, float *delta);
#ifdef GPU
void forward_maxpool_layer_gpu(maxpool_layer layer, cl_mem input);
void backward_maxpool_layer_gpu(maxpool_layer layer, cl_mem delta);
#endif
#endif

View File

@ -41,7 +41,7 @@ void time_random_matrix(int TA, int TB, int m, int k, int n)
float *c = random_matrix(m,n);
int i;
clock_t start = clock(), end;
for(i = 0; i<1000; ++i){
for(i = 0; i<10; ++i){
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
}
end = clock();

View File

@ -1,4 +1,5 @@
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
@ -31,8 +32,10 @@ network make_network(int n, int batch)
}
#ifdef GPU
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
//printf("start\n");
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
@ -49,22 +52,22 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
forward_connected_layer_gpu(layer, input);
input = layer.output_cl;
}
/*
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
input = layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
forward_softmax_layer(layer, input);
input = layer.output;
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
/*
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
forward_crop_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
forward_normalization_layer(layer, input);
@ -99,6 +102,14 @@ void backward_network_gpu(network net, cl_mem input)
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
}
}
@ -127,6 +138,14 @@ cl_mem get_network_output_cl_layer(network net, int i)
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output_cl;
}
return 0;
}
@ -140,6 +159,14 @@ cl_mem get_network_delta_cl_layer(network net, int i)
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_cl;
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_cl;
}
return 0;
}
@ -330,7 +357,7 @@ void backward_network(network net, float *input)
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
if(i != 0) backward_maxpool_layer(layer, prev_delta);
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
@ -338,7 +365,7 @@ void backward_network(network net, float *input)
}
else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
if(i != 0) backward_softmax_layer(layer, prev_delta);
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
@ -351,6 +378,7 @@ void backward_network(network net, float *input)
}
}
#ifdef GPU
float train_network_datum_gpu(network net, float *x, float *y)
{
@ -364,13 +392,12 @@ float train_network_datum_gpu(network net, float *x, float *y)
cl_write_array(*net.truth_cl, y, y_size);
}
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
//int class = get_predicted_class_network(net);
backward_network_gpu(net, *net.input_cl);
float error = get_network_cost(net);
update_network_gpu(net);
//return (y[class]?1:0);
return error;
}
float train_network_sgd_gpu(network net, data d, int n)
{
int batch = net.batch;

View File

@ -4,6 +4,7 @@
#include <string.h>
#include <time.h>
#include <unistd.h>
//#include <clBLAS.h>
#include "opencl.h"
#include "utils.h"
@ -80,9 +81,9 @@ cl_info cl_init()
}
int index = getpid()%num_devices;
index = 0;
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
//info.device = devices[index];
info.device = devices[0];
info.device = devices[index];
fprintf(stderr, "Found %d device(s)\n", num_devices);
check_error(info);
@ -94,10 +95,24 @@ cl_info cl_init()
check_error(info);
info.queue = clCreateCommandQueue(info.context, info.device, 0, &info.error);
check_error(info);
for(i = 0; i < NUM_QUEUES; ++i){
info.queues[i] = clCreateCommandQueue(info.context, info.device, 0, &info.error);
check_error(info);
}
//info.error = clblasSetup();
check_error(info);
info.initialized = 1;
return info;
}
void wait_for_queues()
{
int i;
for(i = 0; i < NUM_QUEUES; ++i){
clFinish(cl.queues[i]);
}
}
cl_program cl_fprog(char *filename, char *options, cl_info info)
{
size_t srcsize;
@ -180,4 +195,14 @@ cl_mem cl_make_array(float *x, int n)
return mem;
}
cl_mem cl_make_int_array(int *x, int n)
{
cl_setup();
cl_mem mem = clCreateBuffer(cl.context,
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(int)*n, x, &cl.error);
check_error(cl);
return mem;
}
#endif

View File

@ -7,6 +7,8 @@
#include <CL/cl.h>
#endif
#define NUM_QUEUES 8
typedef struct {
int initialized;
cl_int error;
@ -14,16 +16,19 @@ typedef struct {
cl_device_id device;
cl_context context;
cl_command_queue queue;
cl_command_queue queues[NUM_QUEUES];
}cl_info;
extern cl_info cl;
void cl_setup();
void wait_for_queues();
void check_error(cl_info info);
cl_kernel get_kernel(char *filename, char *kernelname, char *options);
void cl_read_array(cl_mem mem, float *x, int n);
void cl_write_array(cl_mem mem, float *x, int n);
cl_mem cl_make_array(float *x, int n);
cl_mem cl_make_int_array(int *x, int n);
void cl_copy_array(cl_mem src, cl_mem dst, int n);
cl_mem cl_sub_array(cl_mem src, int offset, int size);
#endif

View File

@ -1,5 +1,6 @@
#include "softmax_layer.h"
#include "mini_blas.h"
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
@ -13,36 +14,25 @@ softmax_layer *make_softmax_layer(int batch, int inputs)
layer->output = calloc(inputs*batch, sizeof(float));
layer->delta = calloc(inputs*batch, sizeof(float));
layer->jacobian = calloc(inputs*inputs*batch, sizeof(float));
#ifdef GPU
layer->output_cl = cl_make_array(layer->output, inputs*batch);
layer->delta_cl = cl_make_array(layer->delta, inputs*batch);
#endif
return layer;
}
/* UNSTABLE!
void forward_softmax_layer(const softmax_layer layer, float *input)
{
int i;
float sum = 0;
for(i = 0; i < layer.inputs; ++i){
sum += exp(input[i]);
}
for(i = 0; i < layer.inputs; ++i){
layer.output[i] = exp(input[i])/sum;
}
}
*/
void forward_softmax_layer(const softmax_layer layer, float *input)
{
int i,b;
for(b = 0; b < layer.batch; ++b){
float sum = 0;
float largest = 0;
float largest = -FLT_MAX;
for(i = 0; i < layer.inputs; ++i){
if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
}
for(i = 0; i < layer.inputs; ++i){
sum += exp(input[i+b*layer.inputs]-largest);
//printf("%f, ", input[i]);
}
//printf("\n");
if(sum) sum = largest+log(sum);
else sum = largest-100;
for(i = 0; i < layer.inputs; ++i){
@ -51,9 +41,51 @@ void forward_softmax_layer(const softmax_layer layer, float *input)
}
}
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta)
void backward_softmax_layer(const softmax_layer layer, float *delta)
{
/*
int i;
for(i = 0; i < layer.inputs*layer.batch; ++i){
delta[i] = layer.delta[i];
}
}
#ifdef GPU
cl_kernel get_softmax_forward_kernel()
{
static int init = 0;
static cl_kernel kernel;
if(!init){
kernel = get_kernel("src/softmax_layer.cl", "forward", 0);
init = 1;
}
return kernel;
}
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input)
{
cl_setup();
cl_kernel kernel = get_softmax_forward_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.inputs), (void*) &layer.inputs);
cl.error = clSetKernelArg(kernel, i++, sizeof(input), (void*) &input);
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
check_error(cl);
const size_t global_size[] = {layer.batch};
clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
check_error(cl);
}
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta)
{
copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
}
#endif
/* This is if you want softmax w/o log-loss classification. You probably don't.
int i,j,b;
for(b = 0; b < layer.batch; ++b){
for(i = 0; i < layer.inputs; ++i){
@ -74,10 +106,3 @@ void backward_softmax_layer(const softmax_layer layer, float *input, float *delt
gemm(0,0,M,N,K,1,A,K,B,N,0,C,N);
}
*/
int i;
for(i = 0; i < layer.inputs*layer.batch; ++i){
delta[i] = layer.delta[i];
}
}

21
src/softmax_layer.cl Normal file
View File

@ -0,0 +1,21 @@
__kernel void forward(int n, __global float *input, __global float *output)
{
int b = get_global_id(0);
int i;
float sum = 0;
float largest = -INFINITY;
for(i = 0; i < n; ++i){
int val = input[i+b*n];
largest = (val>largest) ? val : largest;
}
for(i = 0; i < n; ++i){
sum += exp(input[i+b*n]-largest);
}
sum = (sum != 0) ? largest+log(sum) : largest-100;
for(i = 0; i < n; ++i){
output[i+b*n] = exp(input[i+b*n]-sum);
}
}

View File

@ -1,16 +1,27 @@
#ifndef SOFTMAX_LAYER_H
#define SOFTMAX_LAYER_H
#include "opencl.h"
typedef struct {
int inputs;
int batch;
float *delta;
float *output;
float *jacobian;
#ifdef GPU
cl_mem delta_cl;
cl_mem output_cl;
#endif
} softmax_layer;
softmax_layer *make_softmax_layer(int batch, int inputs);
void forward_softmax_layer(const softmax_layer layer, float *input);
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta);
void backward_softmax_layer(const softmax_layer layer, float *delta);
#ifdef GPU
void forward_softmax_layer_gpu(const softmax_layer layer, cl_mem input);
void backward_softmax_layer_gpu(const softmax_layer layer, cl_mem delta);
#endif
#endif

View File

@ -4,6 +4,11 @@
#include <string.h>
#include <math.h>
float sec(clock_t clocks)
{
return (float)clocks/CLOCKS_PER_SEC;
}
void error(char *s)
{
fprintf(stderr, "Error: %s\n", s);

View File

@ -1,6 +1,7 @@
#ifndef UTILS_H
#define UTILS_H
#include <stdio.h>
#include <time.h>
#include "list.h"
void error(char *s);
@ -25,5 +26,6 @@ float sum_array(float *a, int n);
float mean_array(float *a, int n);
float variance_array(float *a, int n);
float **one_hot_encode(float *a, int n, int k);
float sec(clock_t clocks);
#endif