mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixing up maxpool layer
This commit is contained in:
parent
7756cccb79
commit
9b3c7136f3
1
Makefile
1
Makefile
@ -7,7 +7,6 @@ else
|
||||
endif
|
||||
UNAME = $(shell uname)
|
||||
OPTS=-Ofast -flto
|
||||
OPTS=-Ofast -flto
|
||||
ifeq ($(UNAME), Darwin)
|
||||
COMMON+= -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
|
||||
ifeq ($(GPU), 1)
|
||||
|
27
src/cnn.c
27
src/cnn.c
@ -278,29 +278,20 @@ void test_data()
|
||||
free_data(train);
|
||||
}
|
||||
|
||||
void train_full()
|
||||
void train_assira()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/imagenet.cfg");
|
||||
network net = parse_network_cfg("cfg/assira.cfg");
|
||||
srand(2222222);
|
||||
int i = 0;
|
||||
char *labels[] = {"cat","dog"};
|
||||
float lr = .00001;
|
||||
float momentum = .9;
|
||||
float decay = 0.01;
|
||||
while(1){
|
||||
i += 1000;
|
||||
data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
|
||||
//image im = float_to_image(256, 256, 3,train.X.vals[0]);
|
||||
//visualize_network(net);
|
||||
//cvWaitKey(100);
|
||||
//show_image(im, "input");
|
||||
//cvWaitKey(100);
|
||||
//scale_data_rows(train, 1./255.);
|
||||
data train = load_data_image_pathfile_random("data/assira/train.list", 1000, labels, 2, 256, 256);
|
||||
normalize_data_rows(train);
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, 1000);
|
||||
float loss = train_network_sgd_gpu(net, train, 10);
|
||||
end = clock();
|
||||
printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
|
||||
printf("%d: %f, Time: %lf seconds\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC );
|
||||
free_data(train);
|
||||
if(i%10000==0){
|
||||
char buff[256];
|
||||
@ -367,10 +358,10 @@ void train_cifar10()
|
||||
data train = load_all_cifar10();
|
||||
while(++count <= 10000){
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, iters);
|
||||
float loss = train_network_sgd_gpu(net, train, iters);
|
||||
end = clock();
|
||||
visualize_network(net);
|
||||
cvWaitKey(5000);
|
||||
//visualize_network(net);
|
||||
//cvWaitKey(5000);
|
||||
|
||||
//float test_acc = network_accuracy(net, test);
|
||||
//printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
@ -902,7 +893,7 @@ void test_distribution()
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
//train_full();
|
||||
//train_assira();
|
||||
//test_distribution();
|
||||
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
|
||||
|
||||
|
@ -38,9 +38,17 @@ connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVA
|
||||
for(i = 0; i < outputs; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
layer->biases[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_cl = cl_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_cl = cl_make_array(layer->biases, outputs);
|
||||
|
||||
layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs);
|
||||
|
||||
layer->output_cl = cl_make_array(layer->output, outputs*batch);
|
||||
layer->delta_cl = cl_make_array(layer->delta, outputs*batch);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
return layer;
|
||||
@ -76,8 +84,8 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
{
|
||||
int i;
|
||||
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.bias_updates[i%layer.outputs] += layer.delta[i];
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
@ -98,3 +106,61 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer)
|
||||
{
|
||||
axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs);
|
||||
copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1);
|
||||
clReleaseMemObject(sub);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
cl_mem a = input;
|
||||
cl_mem b = layer.weights_cl;
|
||||
cl_mem c = layer.output_cl;
|
||||
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta)
|
||||
{
|
||||
int i;
|
||||
gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs);
|
||||
axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1);
|
||||
clReleaseMemObject(sub);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
cl_mem a = input;
|
||||
cl_mem b = layer.delta_cl;
|
||||
cl_mem c = layer.weight_updates_cl;
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
|
||||
a = layer.delta_cl;
|
||||
b = layer.weights_cl;
|
||||
c = delta;
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
}
|
||||
#endif
|
||||
|
@ -31,9 +31,6 @@ typedef struct{
|
||||
cl_mem weight_updates_cl;
|
||||
cl_mem bias_updates_cl;
|
||||
|
||||
cl_mem weight_momentum_cl;
|
||||
cl_mem bias_momentum_cl;
|
||||
|
||||
cl_mem output_cl;
|
||||
cl_mem delta_cl;
|
||||
#endif
|
||||
@ -47,6 +44,11 @@ void forward_connected_layer(connected_layer layer, float *input);
|
||||
void backward_connected_layer(connected_layer layer, float *input, float *delta);
|
||||
void update_connected_layer(connected_layer layer);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_connected_layer_gpu(connected_layer layer, cl_mem input);
|
||||
void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta);
|
||||
void update_connected_layer_gpu(connected_layer layer);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -27,7 +27,7 @@ maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int
|
||||
layer->c = c;
|
||||
layer->size = size;
|
||||
layer->stride = stride;
|
||||
layer->max_indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int));
|
||||
layer->indexes = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(int));
|
||||
layer->output = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
|
||||
layer->delta = calloc(((h-1)/stride+1) * ((w-1)/stride+1) * c*batch, sizeof(float));
|
||||
return layer;
|
||||
@ -44,36 +44,35 @@ void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
|
||||
|
||||
void forward_maxpool_layer(const maxpool_layer layer, float *input)
|
||||
{
|
||||
int b;
|
||||
int b,i,j,k,l,m;
|
||||
int w_offset = (-layer.size-1)/2 + 1;
|
||||
int h_offset = (-layer.size-1)/2 + 1;
|
||||
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
|
||||
int i,j,k,l,m;
|
||||
for(k = 0; k < layer.c; ++k){
|
||||
for(i = 0; i < layer.h; i += layer.stride){
|
||||
for(j = 0; j < layer.w; j += layer.stride){
|
||||
int out_index = j/layer.stride + w*(i/layer.stride + h*(k + c*b));
|
||||
layer.output[out_index] = -FLT_MAX;
|
||||
int lower = (-layer.size-1)/2 + 1;
|
||||
int upper = layer.size/2 + 1;
|
||||
|
||||
int lh = (i+lower < 0) ? 0 : i+lower;
|
||||
int uh = (i+upper > layer.h) ? layer.h : i+upper;
|
||||
|
||||
int lw = (j+lower < 0) ? 0 : j+lower;
|
||||
int uw = (j+upper > layer.w) ? layer.w : j+upper;
|
||||
for(l = lh; l < uh; ++l){
|
||||
for(m = lw; m < uw; ++m){
|
||||
//printf("%d %d\n", l, m);
|
||||
int index = m + layer.w*(l + layer.h*(k + b*layer.c));
|
||||
if(input[index] > layer.output[out_index]){
|
||||
layer.output[out_index] = input[index];
|
||||
layer.max_indexes[out_index] = index;
|
||||
}
|
||||
for(k = 0; k < c; ++k){
|
||||
for(i = 0; i < h; ++i){
|
||||
for(j = 0; j < w; ++j){
|
||||
int out_index = j + w*(i + h*(k + c*b));
|
||||
float max = -FLT_MAX;
|
||||
int max_i = -1;
|
||||
for(l = 0; l < layer.size; ++l){
|
||||
for(m = 0; m < layer.size; ++m){
|
||||
int cur_h = h_offset + i*layer.stride + l;
|
||||
int cur_w = w_offset + j*layer.stride + m;
|
||||
int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
|
||||
int valid = (cur_h >= 0 && cur_h < layer.h &&
|
||||
cur_w >= 0 && cur_w < layer.w);
|
||||
float val = (valid != 0) ? input[index] : -INFINITY;
|
||||
max_i = (val > max) ? index : max_i;
|
||||
max = (val > max) ? val : max;
|
||||
}
|
||||
}
|
||||
layer.output[out_index] = max;
|
||||
layer.indexes[out_index] = max_i;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -88,7 +87,7 @@ void backward_maxpool_layer(const maxpool_layer layer, float *input, float *delt
|
||||
int c = layer.c;
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
for(i = 0; i < h*w*c*layer.batch; ++i){
|
||||
int index = layer.max_indexes[i];
|
||||
int index = layer.indexes[i];
|
||||
delta[index] += layer.delta[i];
|
||||
}
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ typedef struct {
|
||||
int h,w,c;
|
||||
int stride;
|
||||
int size;
|
||||
int *max_indexes;
|
||||
int *indexes;
|
||||
float *delta;
|
||||
float *output;
|
||||
} maxpool_layer;
|
||||
|
@ -24,7 +24,8 @@ network make_network(int n, int batch)
|
||||
net.outputs = 0;
|
||||
net.output = 0;
|
||||
#ifdef GPU
|
||||
net.input_cl = 0;
|
||||
net.input_cl = calloc(1, sizeof(cl_mem));
|
||||
net.truth_cl = calloc(1, sizeof(cl_mem));
|
||||
#endif
|
||||
return net;
|
||||
}
|
||||
@ -43,12 +44,12 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer_gpu(layer, input, truth);
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer(layer, input, train);
|
||||
input = layer.output;
|
||||
forward_connected_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer(layer, input);
|
||||
@ -94,6 +95,10 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -105,18 +110,9 @@ void update_network_gpu(network net)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer);
|
||||
update_connected_layer_gpu(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -127,6 +123,10 @@ cl_mem get_network_output_cl_layer(network net, int i)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -136,6 +136,10 @@ cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -347,6 +351,46 @@ void backward_network(network net, float *input)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
if(!*net.input_cl){
|
||||
*net.input_cl = cl_make_array(x, x_size);
|
||||
*net.truth_cl = cl_make_array(y, y_size);
|
||||
}else{
|
||||
cl_write_array(*net.input_cl, x, x_size);
|
||||
cl_write_array(*net.truth_cl, y, y_size);
|
||||
}
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
//int class = get_predicted_class_network(net);
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
float error = get_network_cost(net);
|
||||
update_network_gpu(net);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
}
|
||||
float train_network_sgd_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_batch(d, batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
float train_network_datum(network net, float *x, float *y)
|
||||
{
|
||||
forward_network(net, x, y, 1);
|
||||
|
@ -30,8 +30,8 @@ typedef struct {
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
cl_mem input_cl;
|
||||
cl_mem output_cl;
|
||||
cl_mem *input_cl;
|
||||
cl_mem *truth_cl;
|
||||
#endif
|
||||
} network;
|
||||
|
||||
@ -41,6 +41,7 @@ void backward_network_gpu(network net, cl_mem input);
|
||||
void update_network_gpu(network net);
|
||||
cl_mem get_network_output_cl_layer(network net, int i);
|
||||
cl_mem get_network_delta_cl_layer(network net, int i);
|
||||
float train_network_sgd_gpu(network net, data d, int n);
|
||||
#endif
|
||||
|
||||
network make_network(int n, int batch);
|
||||
|
Loading…
Reference in New Issue
Block a user