Extracting features from VOC with temp filters

This commit is contained in:
Joseph Redmon 2014-02-14 16:09:07 -08:00
parent 118bdd6f62
commit 228d3663f8
9 changed files with 128 additions and 32 deletions

View File

@ -3,11 +3,21 @@
#include "mini_blas.h"
#include <stdio.h>
int convolutional_out_height(convolutional_layer layer)
{
return (layer.h-layer.size)/layer.stride + 1;
}
int convolutional_out_width(convolutional_layer layer)
{
return (layer.w-layer.size)/layer.stride + 1;
}
image get_convolutional_image(convolutional_layer layer)
{
int h,w,c;
h = layer.out_h;
w = layer.out_w;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(h,w,c,layer.output);
}
@ -15,8 +25,8 @@ image get_convolutional_image(convolutional_layer layer)
image get_convolutional_delta(convolutional_layer layer)
{
int h,w,c;
h = layer.out_h;
w = layer.out_w;
h = convolutional_out_height(layer);
w = convolutional_out_width(layer);
c = layer.n;
return float_to_image(h,w,c,layer.delta);
}
@ -24,7 +34,6 @@ image get_convolutional_delta(convolutional_layer layer)
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
int i;
int out_h,out_w;
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
layer->h = h;
@ -47,15 +56,13 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
//layer->biases[i] = rand_normal()*scale + scale;
layer->biases[i] = 0;
}
out_h = (h-size)/stride + 1;
out_w = (w-size)/stride + 1;
int out_h = (h-size)/stride + 1;
int out_w = (w-size)/stride + 1;
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
layer->output = calloc(out_h * out_w * n, sizeof(float));
layer->delta = calloc(out_h * out_w * n, sizeof(float));
layer->activation = activation;
layer->out_h = out_h;
layer->out_w = out_w;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
srand(0);
@ -90,7 +97,10 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
void gradient_delta_convolutional_layer(convolutional_layer layer)
{
int i;
for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){
int size = convolutional_out_height(layer)
*convolutional_out_width(layer)
*layer.n;
for(i = 0; i < size; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation);
}
}
@ -98,7 +108,8 @@ void gradient_delta_convolutional_layer(convolutional_layer layer)
void learn_bias_convolutional_layer(convolutional_layer layer)
{
int i,j;
int size = layer.out_h*layer.out_w;
int size = convolutional_out_height(layer)
*convolutional_out_width(layer);
for(i = 0; i < layer.n; ++i){
float sum = 0;
for(j = 0; j < size; ++j){

View File

@ -6,7 +6,6 @@
typedef struct {
int h,w,c;
int out_h, out_w, out_c;
int n;
int size;
int stride;

View File

@ -1,5 +1,4 @@
#include "data.h"
#include "list.h"
#include "utils.h"
#include "image.h"

View File

@ -2,6 +2,7 @@
#define DATA_H
#include "matrix.h"
#include "list.h"
typedef struct{
matrix X;
@ -16,6 +17,7 @@ data load_data_image_pathfile_part(char *filename, int part, int total,
char **labels, int k, int h, int w);
data load_data_image_pathfile_random(char *filename, int n, char **labels,
int k, int h, int w);
list *get_paths(char *filename);
data load_categorical_data_csv(char *filename, int target, int k);
void normalize_data_rows(data d);
void scale_data_rows(data d, float s);

View File

@ -342,21 +342,11 @@ IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth,
return outImg;
}
image load_image(char *filename, int h, int w)
image ipl_to_image(IplImage* src)
{
IplImage* src = 0;
if( (src = cvLoadImage(filename,-1)) == 0 )
{
printf("Cannot load file image %s\n", filename);
exit(0);
}
cvShowImage("Orig", src);
IplImage *resized = resizeImage(src, h, w, 1);
cvShowImage("Sized", resized);
cvWaitKey(0);
cvReleaseImage(&src);
src = resized;
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image out = make_image(h,w,c);
@ -369,6 +359,21 @@ image load_image(char *filename, int h, int w)
}
}
}
return out;
}
image load_image(char *filename, int h, int w)
{
IplImage* src = 0;
if( (src = cvLoadImage(filename,-1)) == 0 )
{
printf("Cannot load file image %s\n", filename);
exit(0);
}
IplImage *resized = resizeImage(src, h, w, 1);
cvReleaseImage(&src);
src = resized;
image out = ipl_to_image(src);
cvReleaseImage(&src);
return out;
}

View File

@ -34,6 +34,7 @@ image make_random_kernel(int size, int c, float scale);
image float_to_image(int h, int w, int c, float *data);
image copy_image(image p);
image load_image(char *filename, int h, int w);
image ipl_to_image(IplImage* src);
float get_pixel(image m, int x, int y, int c);
float get_pixel_extend(image m, int x, int y, int c);

View File

@ -331,6 +331,34 @@ int get_network_output_size_layer(network net, int i)
return 0;
}
int reset_network_size(network net, int h, int w, int c)
{
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
layer->h = h;
layer->w = w;
layer->c = c;
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
layer->h = h;
layer->w = w;
layer->c = c;
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}
}
return 0;
}
int get_network_output_size(network net)
{
int i = net.n-1;

View File

@ -41,6 +41,7 @@ int get_predicted_class_network(network net);
void print_network(network net);
void visualize_network(network net);
void save_network(network net, char *filename);
int reset_network_size(network net, int h, int w, int c);
#endif

View File

@ -366,20 +366,21 @@ void test_im2row()
void train_VOC()
{
network net = parse_network_cfg("cfg/voc_backup_ramp_80.cfg");
network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg");
srand(2222222);
int i = 0;
int i = 20;
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
float lr = .00001;
float momentum = .9;
float decay = 0.01;
while(i++ < 1000 || 1){
visualize_network(net);
cvWaitKey(100);
data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400);
image im = float_to_image(300, 400, 3,train.X.vals[0]);
show_image(im, "input");
visualize_network(net);
cvWaitKey(100);
normalize_data_rows(train);
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay);
@ -388,13 +389,61 @@ void train_VOC()
free_data(train);
if(i%10==0){
char buff[256];
sprintf(buff, "cfg/voc_backup_ramp_%d.cfg", i);
sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i);
save_network(net, buff);
}
//lr *= .99;
}
}
void features_VOC()
{
int i,j;
network net = parse_network_cfg("cfg/voc_features.cfg");
char *path_file = "images/VOC2012/all_paths.txt";
char *out_dir = "voc_features/";
list *paths = get_paths(path_file);
node *n = paths->front;
while(n){
char *path = (char *)n->val;
char buff[1024];
sprintf(buff, "%s%s.txt",out_dir, path);
FILE *fp = fopen(buff, "w");
if(fp == 0) file_error(buff);
IplImage* src = 0;
if( (src = cvLoadImage(path,-1)) == 0 )
{
printf("Cannot load file image %s\n", path);
exit(0);
}
for(i = 0; i < 10; ++i){
int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!!
int h = (int)((double)w/src->width * src->height);
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
cvResize(src, sized, CV_INTER_LINEAR);
image im = ipl_to_image(sized);
reset_network_size(net, im.h, im.w, im.c);
forward_network(net, im.data);
free_image(im);
image out = get_network_image_layer(net, 5);
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
for(j = 0; j < out.c*out.h*out.w; ++j){
if(j != 0)fprintf(fp, ",");
fprintf(fp, "%g", out.data[j]);
}
fprintf(fp, "\n");
out.c = 1;
show_image(out, "output");
cvWaitKey(10);
cvReleaseImage(&sized);
}
fclose(fp);
n = n->next;
}
}
int main()
{
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
@ -406,7 +455,8 @@ int main()
//test_ensemble();
//test_nist();
//test_full();
train_VOC();
//train_VOC();
features_VOC();
//test_random_preprocess();
//test_random_classify();
//test_parser();