Distributed training

This commit is contained in:
Joseph Redmon 2014-12-07 00:41:26 -08:00
parent 1edcf73a73
commit 28e2115272
9 changed files with 229 additions and 110 deletions

View File

@ -28,7 +28,7 @@ endif
endif
CFLAGS= $(COMMON) $(OPTS)
#CFLAGS= $(COMMON) -O0 -g
LDFLAGS+=`pkg-config --libs opencv` -lm
LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
VPATH=./src/
EXEC=cnn
OBJDIR=./obj/

View File

@ -8,6 +8,7 @@
#include "matrix.h"
#include "utils.h"
#include "mini_blas.h"
#include "server.h"
#include <time.h>
#include <stdlib.h>
@ -370,15 +371,52 @@ void train_detection_net()
}
}
void train_imagenet_distributed(char *address)
{
float avg_loss = 1;
srand(0);
network net = parse_network_cfg("cfg/alexnet.client");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1000/net.batch+1;
imgs = 1;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
clock_t time;
while(1){
i += 1;
time=clock();
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
//translate_data_rows(train, -144);
normalize_data_rows(train);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
#ifdef GPU
float loss = train_network_data_gpu(net, train, imgs);
client_update(net, address);
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
#endif
free_data(train);
if(i%10==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
save_network(net, buff);
}
}
}
void train_imagenet()
{
float avg_loss = 1;
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
network net = parse_network_cfg("cfg/alexnet.part");
srand(0);
network net = parse_network_cfg("cfg/alexnet.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1000/net.batch+1;
srand(time(0));
imgs=1;
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
@ -450,7 +488,7 @@ void draw_detection(image im, float *box)
for(c = 0; c < 8; ++c){
j = (r*8 + c) * 5;
printf("Prob: %f\n", box[j]);
if(box[j] > .05){
if(box[j] > .01){
int d = 256/8;
int y = r*d+box[j+1]*d;
int x = c*d+box[j+2]*d;
@ -715,6 +753,7 @@ void test_split()
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
}
/*
void test_im2row()
{
int h = 20;
@ -734,6 +773,7 @@ void test_im2row()
//image render = float_to_image(mh, mw, mc, matrix);
}
}
*/
void flip_network()
{
@ -830,15 +870,23 @@ void test_correct_alexnet()
#endif
}
void test_server()
void run_server()
{
network net = parse_network_cfg("cfg/alexnet.test");
srand(0);
network net = parse_network_cfg("cfg/alexnet.server");
server_update(net);
}
void test_client()
{
network net = parse_network_cfg("cfg/alexnet.test");
client_update(net);
network net = parse_network_cfg("cfg/alexnet.client");
clock_t time=clock();
client_update(net, "localhost");
printf("1\n");
client_update(net, "localhost");
printf("2\n");
client_update(net, "localhost");
printf("3\n");
printf("Transfered: %lf seconds\n", sec(clock()-time));
}
int main(int argc, char *argv[])
@ -853,8 +901,8 @@ int main(int argc, char *argv[])
else if(0==strcmp(argv[1], "nist")) train_nist();
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
else if(0==strcmp(argv[1], "test")) test_imagenet();
else if(0==strcmp(argv[1], "server")) test_server();
else if(0==strcmp(argv[1], "client")) test_client();
else if(0==strcmp(argv[1], "server")) run_server();
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
else if(0==strcmp(argv[1], "detect")) test_detection();
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);

View File

@ -112,12 +112,16 @@ void pull_connected_layer(connected_layer layer)
{
cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
}
void push_connected_layer(connected_layer layer)
{
cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
}
void update_connected_layer_gpu(connected_layer layer)

View File

@ -59,11 +59,9 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
layer->filters = calloc(c*n*size*size, sizeof(float));
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
layer->biases = calloc(n, sizeof(float));
layer->bias_updates = calloc(n, sizeof(float));
layer->bias_momentum = calloc(n, sizeof(float));
float scale = 1./(size*size*c);
scale = .01;
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
@ -77,14 +75,13 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
#ifdef GPU
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
layer->biases_cl = cl_make_array(layer->biases, n);
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
@ -394,12 +391,16 @@ void pull_convolutional_layer(convolutional_layer layer)
{
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
cl_read_array(layer.biases_cl, layer.biases, layer.n);
cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void push_convolutional_layer(convolutional_layer layer)
{
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
cl_write_array(layer.biases_cl, layer.biases, layer.n);
cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)

View File

@ -18,11 +18,9 @@ typedef struct {
int pad;
float *filters;
float *filter_updates;
float *filter_momentum;
float *biases;
float *bias_updates;
float *bias_momentum;
float *col_image;
float *delta;
@ -31,11 +29,9 @@ typedef struct {
#ifdef GPU
cl_mem filters_cl;
cl_mem filter_updates_cl;
cl_mem filter_momentum_cl;
cl_mem biases_cl;
cl_mem bias_updates_cl;
cl_mem bias_momentum_cl;
cl_mem col_image_cl;
cl_mem delta_cl;

View File

@ -88,7 +88,7 @@ cl_info cl_init()
}
int index = getpid()%num_devices;
index = 0;
index = 1;
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
info.device = devices[index];
fprintf(stderr, "Found %d device(s)\n", num_devices);

View File

@ -1,136 +1,205 @@
#include <stdio.h> /* needed for sockaddr_in */
#include <string.h> /* needed for sockaddr_in */
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h> /* needed for sockaddr_in */
#include <stdio.h> /* needed for sockaddr_in */
#include <string.h> /* needed for sockaddr_in */
#include <netdb.h>
#include <pthread.h>
#include "mini_blas.h"
#include "utils.h"
#include "server.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#define MESSAGESIZE 50012
#define NUMFLOATS ((MESSAGESIZE-12)/4)
#define SERVER_PORT 9876
#define CLIENT_PORT 9879
#define STR(x) #x
#define PARAMETER_SERVER localhost
typedef struct{
int layer;
int wob;
int offset;
float data[NUMFLOATS];
} message;
int socket_setup(int port)
int socket_setup(int server)
{
static int fd = 0; /* our socket */
if(fd) return fd;
struct sockaddr_in myaddr; /* our address */
int fd = 0; /* our socket */
struct sockaddr_in me; /* our address */
/* create a UDP socket */
if ((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
perror("cannot create socket\n");
fd=0;
return 0;
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
error("cannot create socket");
}
/* bind the socket to any valid IP address and a specific port */
if (server == 1){
bzero((char *) &me, sizeof(me));
me.sin_family = AF_INET;
me.sin_addr.s_addr = htonl(INADDR_ANY);
me.sin_port = htons(SERVER_PORT);
memset((char *)&myaddr, 0, sizeof(myaddr));
myaddr.sin_family = AF_INET;
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
myaddr.sin_port = htons(port);
if (bind(fd, (struct sockaddr *)&myaddr, sizeof(myaddr)) < 0) {
perror("bind failed");
fd=0;
return 0;
if (bind(fd, (struct sockaddr *)&me, sizeof(me)) < 0) {
error("bind failed");
}
}
return fd;
}
typedef struct{
int fd;
int *counter;
network net;
} connection_info;
void read_all(int fd, char *buffer, size_t bytes)
{
size_t n = 0;
while(n < bytes){
int next = read(fd, buffer + n, bytes-n);
if(next < 0) error("read failed");
n += next;
}
}
void write_all(int fd, char *buffer, size_t bytes)
{
size_t n = 0;
while(n < bytes){
int next = write(fd, buffer + n, bytes-n);
if(next < 0) error("write failed");
n += next;
}
}
void read_and_add_into(int fd, float *a, int n)
{
float *buff = calloc(n, sizeof(float));
read_all(fd, (char*) buff, n*sizeof(float));
axpy_cpu(n, 1, buff, 1, a, 1);
free(buff);
}
void handle_connection(void *pointer)
{
printf("New Connection\n");
connection_info info = *(connection_info *) pointer;
int fd = info.fd;
network net = info.net;
++*(info.counter);
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
read_and_add_into(fd, layer.bias_updates, layer.n);
int num = layer.n*layer.c*layer.size*layer.size;
read_and_add_into(fd, layer.filter_updates, num);
}
if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i];
read_and_add_into(fd, layer.bias_updates, layer.outputs);
read_and_add_into(fd, layer.weight_updates, layer.inputs*layer.outputs);
}
}
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
update_convolutional_layer(layer);
write_all(fd, (char*) layer.biases, layer.n*sizeof(float));
int num = layer.n*layer.c*layer.size*layer.size;
write_all(fd, (char*) layer.filters, num*sizeof(float));
}
if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i];
update_connected_layer(layer);
write_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
write_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
}
}
printf("Received updates\n");
close(fd);
}
void server_update(network net)
{
int fd = socket_setup(SERVER_PORT);
struct sockaddr_in remaddr; /* remote address */
socklen_t addrlen = sizeof(remaddr); /* length of addresses */
int recvlen; /* # bytes received */
unsigned char buf[MESSAGESIZE]; /* receive buffer */
message m;
int count = 0;
int fd = socket_setup(1);
int counter = 0;
listen(fd, 10);
struct sockaddr_in client; /* remote address */
socklen_t client_size = sizeof(client); /* length of addresses */
connection_info info;
info.net = net;
info.counter = &counter;
while(1){
recvlen = recvfrom(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&remaddr, &addrlen);
memcpy(&m, buf, recvlen);
//printf("received %d bytes\n", recvlen);
//printf("layer %d wob %d offset %d\n", m.layer, m.wob, m.offset);
++count;
if(count % 100 == 0) printf("%d\n", count);
pthread_t worker;
int connection = accept(fd, (struct sockaddr *) &client, &client_size);
info.fd = connection;
pthread_create(&worker, NULL, (void *) &handle_connection, &info);
}
//printf("%s\n", buf);
}
void client_update(network net)
void client_update(network net, char *address)
{
int fd = socket_setup(CLIENT_PORT);
struct hostent *hp; /* host information */
struct sockaddr_in servaddr; /* server address */
printf("%ld %ld\n", sizeof(message), MESSAGESIZE);
char *my_message = "this is a test message";
int fd = socket_setup(0);
unsigned char buf[MESSAGESIZE];
message m;
struct hostent *hp; /* host information */
struct sockaddr_in server; /* server address */
/* fill in the server's address and data */
memset((char*)&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERVER_PORT);
bzero((char*)&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_port = htons(SERVER_PORT);
/* look up the address of the server given its name */
hp = gethostbyname("localhost");
hp = gethostbyname(address);
if (!hp) {
perror("no such host");
fprintf(stderr, "could not obtain address of %s\n", "localhost");
}
/* put the host's address into the server address structure */
memcpy((void *)&servaddr.sin_addr, hp->h_addr_list[0], hp->h_length);
memcpy((void *)&server.sin_addr, hp->h_addr_list[0], hp->h_length);
if (connect(fd, (struct sockaddr *) &server, sizeof(server)) < 0) {
error("error connecting");
}
/* send a message to the server */
int i, j, k;
int i;
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
write_all(fd, (char*) layer.bias_updates, layer.n*sizeof(float));
int num = layer.n*layer.c*layer.size*layer.size;
write_all(fd, (char*) layer.filter_updates, num*sizeof(float));
memset(layer.bias_updates, 0, layer.n*sizeof(float));
memset(layer.filter_updates, 0, num*sizeof(float));
}
if(net.types[i] == CONNECTED){
connected_layer *layer = (connected_layer *) net.layers[i];
m.layer = i;
m.wob = 0;
for(j = 0; j < layer->outputs; j += NUMFLOATS){
m.offset = j;
int num = layer->outputs - j;
if(NUMFLOATS < num) num = NUMFLOATS;
memcpy(m.data, &layer->bias_updates[j], num*sizeof(float));
memcpy(buf, &m, MESSAGESIZE);
if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
perror("sendto failed");
}
}
m.wob = 1;
for(j = 0; j < layer->outputs*layer->inputs; j += NUMFLOATS){
m.offset = j;
int num = layer->outputs*layer->inputs - j;
if(NUMFLOATS < num) num = NUMFLOATS;
memcpy(m.data, &layer->weight_updates[j], num*sizeof(float));
memcpy(buf, &m, MESSAGESIZE);
if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
perror("sendto failed");
}
}
connected_layer layer = *(connected_layer *) net.layers[i];
write_all(fd, (char *)layer.bias_updates, layer.outputs*sizeof(float));
write_all(fd, (char *)layer.weight_updates, layer.outputs*layer.inputs*sizeof(float));
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
memset(layer.weight_updates, 0, layer.inputs*layer.outputs*sizeof(float));
}
}
for(i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
read_all(fd, (char*) layer.biases, layer.n*sizeof(float));
int num = layer.n*layer.c*layer.size*layer.size;
read_all(fd, (char*) layer.filters, num*sizeof(float));
push_convolutional_layer(layer);
}
if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *) net.layers[i];
read_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
read_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
push_connected_layer(layer);
}
}
close(fd);
}

View File

@ -1,4 +1,4 @@
#include "network.h"
void client_update(network net, char *address);
void server_update(network net);
void client_update(network net);

View File

@ -48,7 +48,8 @@ void top_k(float *a, int n, int k, int *index)
void error(char *s)
{
fprintf(stderr, "Error: %s\n", s);
perror(s);
//fprintf(stderr, "Error: %s\n", s);
exit(0);
}