mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Distributed training
This commit is contained in:
parent
1edcf73a73
commit
28e2115272
2
Makefile
2
Makefile
@ -28,7 +28,7 @@ endif
|
||||
endif
|
||||
CFLAGS= $(COMMON) $(OPTS)
|
||||
#CFLAGS= $(COMMON) -O0 -g
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm
|
||||
LDFLAGS+=`pkg-config --libs opencv` -lm -pthread
|
||||
VPATH=./src/
|
||||
EXEC=cnn
|
||||
OBJDIR=./obj/
|
||||
|
66
src/cnn.c
66
src/cnn.c
@ -8,6 +8,7 @@
|
||||
#include "matrix.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "server.h"
|
||||
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
@ -370,15 +371,52 @@ void train_detection_net()
|
||||
}
|
||||
}
|
||||
|
||||
void train_imagenet_distributed(char *address)
|
||||
{
|
||||
float avg_loss = 1;
|
||||
srand(0);
|
||||
network net = parse_network_cfg("cfg/alexnet.client");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
imgs = 1;
|
||||
int i = 0;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
printf("%d\n", plist->size);
|
||||
clock_t time;
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
|
||||
//translate_data_rows(train, -144);
|
||||
normalize_data_rows(train);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
#ifdef GPU
|
||||
float loss = train_network_data_gpu(net, train, imgs);
|
||||
client_update(net, address);
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
|
||||
#endif
|
||||
free_data(train);
|
||||
if(i%10==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void train_imagenet()
|
||||
{
|
||||
float avg_loss = 1;
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
network net = parse_network_cfg("cfg/alexnet.part");
|
||||
srand(0);
|
||||
network net = parse_network_cfg("cfg/alexnet.cfg");
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1000/net.batch+1;
|
||||
srand(time(0));
|
||||
imgs=1;
|
||||
int i = 0;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
@ -450,7 +488,7 @@ void draw_detection(image im, float *box)
|
||||
for(c = 0; c < 8; ++c){
|
||||
j = (r*8 + c) * 5;
|
||||
printf("Prob: %f\n", box[j]);
|
||||
if(box[j] > .05){
|
||||
if(box[j] > .01){
|
||||
int d = 256/8;
|
||||
int y = r*d+box[j+1]*d;
|
||||
int x = c*d+box[j+2]*d;
|
||||
@ -715,6 +753,7 @@ void test_split()
|
||||
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
|
||||
}
|
||||
|
||||
/*
|
||||
void test_im2row()
|
||||
{
|
||||
int h = 20;
|
||||
@ -734,6 +773,7 @@ void test_im2row()
|
||||
//image render = float_to_image(mh, mw, mc, matrix);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
void flip_network()
|
||||
{
|
||||
@ -830,15 +870,23 @@ void test_correct_alexnet()
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_server()
|
||||
void run_server()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/alexnet.test");
|
||||
srand(0);
|
||||
network net = parse_network_cfg("cfg/alexnet.server");
|
||||
server_update(net);
|
||||
}
|
||||
void test_client()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/alexnet.test");
|
||||
client_update(net);
|
||||
network net = parse_network_cfg("cfg/alexnet.client");
|
||||
clock_t time=clock();
|
||||
client_update(net, "localhost");
|
||||
printf("1\n");
|
||||
client_update(net, "localhost");
|
||||
printf("2\n");
|
||||
client_update(net, "localhost");
|
||||
printf("3\n");
|
||||
printf("Transfered: %lf seconds\n", sec(clock()-time));
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
@ -853,8 +901,8 @@ int main(int argc, char *argv[])
|
||||
else if(0==strcmp(argv[1], "nist")) train_nist();
|
||||
else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet();
|
||||
else if(0==strcmp(argv[1], "test")) test_imagenet();
|
||||
else if(0==strcmp(argv[1], "server")) test_server();
|
||||
else if(0==strcmp(argv[1], "client")) test_client();
|
||||
else if(0==strcmp(argv[1], "server")) run_server();
|
||||
else if(0==strcmp(argv[1], "client")) train_imagenet_distributed(argv[2]);
|
||||
else if(0==strcmp(argv[1], "detect")) test_detection();
|
||||
else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
|
||||
else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
|
||||
|
@ -112,12 +112,16 @@ void pull_connected_layer(connected_layer layer)
|
||||
{
|
||||
cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
||||
cl_read_array(layer.biases_cl, layer.biases, layer.outputs);
|
||||
cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer layer)
|
||||
{
|
||||
cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs);
|
||||
cl_write_array(layer.biases_cl, layer.biases, layer.outputs);
|
||||
cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs);
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer)
|
||||
|
@ -59,11 +59,9 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
|
||||
layer->filters = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
|
||||
|
||||
layer->biases = calloc(n, sizeof(float));
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
layer->bias_momentum = calloc(n, sizeof(float));
|
||||
float scale = 1./(size*size*c);
|
||||
scale = .01;
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
|
||||
@ -77,14 +75,13 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
|
||||
layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
|
||||
|
||||
layer->biases_cl = cl_make_array(layer->biases, n);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
@ -394,12 +391,16 @@ void pull_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
|
@ -18,11 +18,9 @@ typedef struct {
|
||||
int pad;
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
float *filter_momentum;
|
||||
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
float *bias_momentum;
|
||||
|
||||
float *col_image;
|
||||
float *delta;
|
||||
@ -31,11 +29,9 @@ typedef struct {
|
||||
#ifdef GPU
|
||||
cl_mem filters_cl;
|
||||
cl_mem filter_updates_cl;
|
||||
cl_mem filter_momentum_cl;
|
||||
|
||||
cl_mem biases_cl;
|
||||
cl_mem bias_updates_cl;
|
||||
cl_mem bias_momentum_cl;
|
||||
|
||||
cl_mem col_image_cl;
|
||||
cl_mem delta_cl;
|
||||
|
@ -88,7 +88,7 @@ cl_info cl_init()
|
||||
|
||||
}
|
||||
int index = getpid()%num_devices;
|
||||
index = 0;
|
||||
index = 1;
|
||||
printf("%d rand, %d devices, %d index\n", getpid(), num_devices, index);
|
||||
info.device = devices[index];
|
||||
fprintf(stderr, "Found %d device(s)\n", num_devices);
|
||||
|
247
src/server.c
247
src/server.c
@ -1,136 +1,205 @@
|
||||
#include <stdio.h> /* needed for sockaddr_in */
|
||||
#include <string.h> /* needed for sockaddr_in */
|
||||
#include <unistd.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/socket.h>
|
||||
#include <netinet/in.h> /* needed for sockaddr_in */
|
||||
#include <stdio.h> /* needed for sockaddr_in */
|
||||
#include <string.h> /* needed for sockaddr_in */
|
||||
#include <netdb.h>
|
||||
#include <pthread.h>
|
||||
|
||||
#include "mini_blas.h"
|
||||
#include "utils.h"
|
||||
#include "server.h"
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
|
||||
#define MESSAGESIZE 50012
|
||||
#define NUMFLOATS ((MESSAGESIZE-12)/4)
|
||||
#define SERVER_PORT 9876
|
||||
#define CLIENT_PORT 9879
|
||||
#define STR(x) #x
|
||||
#define PARAMETER_SERVER localhost
|
||||
|
||||
typedef struct{
|
||||
int layer;
|
||||
int wob;
|
||||
int offset;
|
||||
float data[NUMFLOATS];
|
||||
} message;
|
||||
|
||||
int socket_setup(int port)
|
||||
int socket_setup(int server)
|
||||
{
|
||||
static int fd = 0; /* our socket */
|
||||
if(fd) return fd;
|
||||
struct sockaddr_in myaddr; /* our address */
|
||||
int fd = 0; /* our socket */
|
||||
struct sockaddr_in me; /* our address */
|
||||
|
||||
/* create a UDP socket */
|
||||
|
||||
if ((fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
|
||||
perror("cannot create socket\n");
|
||||
fd=0;
|
||||
return 0;
|
||||
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
|
||||
error("cannot create socket");
|
||||
}
|
||||
|
||||
/* bind the socket to any valid IP address and a specific port */
|
||||
if (server == 1){
|
||||
bzero((char *) &me, sizeof(me));
|
||||
me.sin_family = AF_INET;
|
||||
me.sin_addr.s_addr = htonl(INADDR_ANY);
|
||||
me.sin_port = htons(SERVER_PORT);
|
||||
|
||||
memset((char *)&myaddr, 0, sizeof(myaddr));
|
||||
myaddr.sin_family = AF_INET;
|
||||
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
|
||||
myaddr.sin_port = htons(port);
|
||||
|
||||
if (bind(fd, (struct sockaddr *)&myaddr, sizeof(myaddr)) < 0) {
|
||||
perror("bind failed");
|
||||
fd=0;
|
||||
return 0;
|
||||
if (bind(fd, (struct sockaddr *)&me, sizeof(me)) < 0) {
|
||||
error("bind failed");
|
||||
}
|
||||
}
|
||||
|
||||
return fd;
|
||||
}
|
||||
|
||||
typedef struct{
|
||||
int fd;
|
||||
int *counter;
|
||||
network net;
|
||||
} connection_info;
|
||||
|
||||
void read_all(int fd, char *buffer, size_t bytes)
|
||||
{
|
||||
size_t n = 0;
|
||||
while(n < bytes){
|
||||
int next = read(fd, buffer + n, bytes-n);
|
||||
if(next < 0) error("read failed");
|
||||
n += next;
|
||||
}
|
||||
}
|
||||
|
||||
void write_all(int fd, char *buffer, size_t bytes)
|
||||
{
|
||||
size_t n = 0;
|
||||
while(n < bytes){
|
||||
int next = write(fd, buffer + n, bytes-n);
|
||||
if(next < 0) error("write failed");
|
||||
n += next;
|
||||
}
|
||||
}
|
||||
|
||||
void read_and_add_into(int fd, float *a, int n)
|
||||
{
|
||||
float *buff = calloc(n, sizeof(float));
|
||||
read_all(fd, (char*) buff, n*sizeof(float));
|
||||
axpy_cpu(n, 1, buff, 1, a, 1);
|
||||
free(buff);
|
||||
}
|
||||
|
||||
void handle_connection(void *pointer)
|
||||
{
|
||||
printf("New Connection\n");
|
||||
connection_info info = *(connection_info *) pointer;
|
||||
int fd = info.fd;
|
||||
network net = info.net;
|
||||
++*(info.counter);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
|
||||
read_and_add_into(fd, layer.bias_updates, layer.n);
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
read_and_add_into(fd, layer.filter_updates, num);
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
|
||||
read_and_add_into(fd, layer.bias_updates, layer.outputs);
|
||||
read_and_add_into(fd, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
}
|
||||
}
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
update_convolutional_layer(layer);
|
||||
|
||||
write_all(fd, (char*) layer.biases, layer.n*sizeof(float));
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
write_all(fd, (char*) layer.filters, num*sizeof(float));
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
update_connected_layer(layer);
|
||||
write_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
|
||||
write_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
|
||||
}
|
||||
}
|
||||
printf("Received updates\n");
|
||||
close(fd);
|
||||
}
|
||||
|
||||
void server_update(network net)
|
||||
{
|
||||
int fd = socket_setup(SERVER_PORT);
|
||||
struct sockaddr_in remaddr; /* remote address */
|
||||
socklen_t addrlen = sizeof(remaddr); /* length of addresses */
|
||||
int recvlen; /* # bytes received */
|
||||
unsigned char buf[MESSAGESIZE]; /* receive buffer */
|
||||
message m;
|
||||
|
||||
int count = 0;
|
||||
int fd = socket_setup(1);
|
||||
int counter = 0;
|
||||
listen(fd, 10);
|
||||
struct sockaddr_in client; /* remote address */
|
||||
socklen_t client_size = sizeof(client); /* length of addresses */
|
||||
connection_info info;
|
||||
info.net = net;
|
||||
info.counter = &counter;
|
||||
while(1){
|
||||
recvlen = recvfrom(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&remaddr, &addrlen);
|
||||
memcpy(&m, buf, recvlen);
|
||||
//printf("received %d bytes\n", recvlen);
|
||||
//printf("layer %d wob %d offset %d\n", m.layer, m.wob, m.offset);
|
||||
++count;
|
||||
if(count % 100 == 0) printf("%d\n", count);
|
||||
pthread_t worker;
|
||||
int connection = accept(fd, (struct sockaddr *) &client, &client_size);
|
||||
info.fd = connection;
|
||||
pthread_create(&worker, NULL, (void *) &handle_connection, &info);
|
||||
}
|
||||
//printf("%s\n", buf);
|
||||
}
|
||||
|
||||
void client_update(network net)
|
||||
void client_update(network net, char *address)
|
||||
{
|
||||
int fd = socket_setup(CLIENT_PORT);
|
||||
struct hostent *hp; /* host information */
|
||||
struct sockaddr_in servaddr; /* server address */
|
||||
printf("%ld %ld\n", sizeof(message), MESSAGESIZE);
|
||||
char *my_message = "this is a test message";
|
||||
int fd = socket_setup(0);
|
||||
|
||||
unsigned char buf[MESSAGESIZE];
|
||||
message m;
|
||||
struct hostent *hp; /* host information */
|
||||
struct sockaddr_in server; /* server address */
|
||||
|
||||
/* fill in the server's address and data */
|
||||
memset((char*)&servaddr, 0, sizeof(servaddr));
|
||||
servaddr.sin_family = AF_INET;
|
||||
servaddr.sin_port = htons(SERVER_PORT);
|
||||
bzero((char*)&server, sizeof(server));
|
||||
server.sin_family = AF_INET;
|
||||
server.sin_port = htons(SERVER_PORT);
|
||||
|
||||
/* look up the address of the server given its name */
|
||||
hp = gethostbyname("localhost");
|
||||
hp = gethostbyname(address);
|
||||
if (!hp) {
|
||||
perror("no such host");
|
||||
fprintf(stderr, "could not obtain address of %s\n", "localhost");
|
||||
}
|
||||
|
||||
/* put the host's address into the server address structure */
|
||||
memcpy((void *)&servaddr.sin_addr, hp->h_addr_list[0], hp->h_length);
|
||||
memcpy((void *)&server.sin_addr, hp->h_addr_list[0], hp->h_length);
|
||||
if (connect(fd, (struct sockaddr *) &server, sizeof(server)) < 0) {
|
||||
error("error connecting");
|
||||
}
|
||||
|
||||
/* send a message to the server */
|
||||
int i, j, k;
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
write_all(fd, (char*) layer.bias_updates, layer.n*sizeof(float));
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
write_all(fd, (char*) layer.filter_updates, num*sizeof(float));
|
||||
memset(layer.bias_updates, 0, layer.n*sizeof(float));
|
||||
memset(layer.filter_updates, 0, num*sizeof(float));
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer *layer = (connected_layer *) net.layers[i];
|
||||
m.layer = i;
|
||||
m.wob = 0;
|
||||
for(j = 0; j < layer->outputs; j += NUMFLOATS){
|
||||
m.offset = j;
|
||||
|
||||
int num = layer->outputs - j;
|
||||
if(NUMFLOATS < num) num = NUMFLOATS;
|
||||
|
||||
memcpy(m.data, &layer->bias_updates[j], num*sizeof(float));
|
||||
memcpy(buf, &m, MESSAGESIZE);
|
||||
|
||||
if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
|
||||
perror("sendto failed");
|
||||
}
|
||||
}
|
||||
m.wob = 1;
|
||||
for(j = 0; j < layer->outputs*layer->inputs; j += NUMFLOATS){
|
||||
m.offset = j;
|
||||
|
||||
int num = layer->outputs*layer->inputs - j;
|
||||
if(NUMFLOATS < num) num = NUMFLOATS;
|
||||
|
||||
memcpy(m.data, &layer->weight_updates[j], num*sizeof(float));
|
||||
memcpy(buf, &m, MESSAGESIZE);
|
||||
|
||||
if (sendto(fd, buf, MESSAGESIZE, 0, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
|
||||
perror("sendto failed");
|
||||
}
|
||||
}
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
write_all(fd, (char *)layer.bias_updates, layer.outputs*sizeof(float));
|
||||
write_all(fd, (char *)layer.weight_updates, layer.outputs*layer.inputs*sizeof(float));
|
||||
memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
|
||||
memset(layer.weight_updates, 0, layer.inputs*layer.outputs*sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
|
||||
read_all(fd, (char*) layer.biases, layer.n*sizeof(float));
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
read_all(fd, (char*) layer.filters, num*sizeof(float));
|
||||
|
||||
push_convolutional_layer(layer);
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
|
||||
read_all(fd, (char *)layer.biases, layer.outputs*sizeof(float));
|
||||
read_all(fd, (char *)layer.weights, layer.outputs*layer.inputs*sizeof(float));
|
||||
|
||||
push_connected_layer(layer);
|
||||
}
|
||||
}
|
||||
close(fd);
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
#include "network.h"
|
||||
|
||||
void client_update(network net, char *address);
|
||||
void server_update(network net);
|
||||
void client_update(network net);
|
||||
|
@ -48,7 +48,8 @@ void top_k(float *a, int n, int k, int *index)
|
||||
|
||||
void error(char *s)
|
||||
{
|
||||
fprintf(stderr, "Error: %s\n", s);
|
||||
perror(s);
|
||||
//fprintf(stderr, "Error: %s\n", s);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user