mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Parsing, image loading, lots of stuff
This commit is contained in:
154
src/network.c
154
src/network.c
@ -1,5 +1,7 @@
|
||||
#include <stdio.h>
|
||||
#include "network.h"
|
||||
#include "image.h"
|
||||
#include "data.h"
|
||||
|
||||
#include "connected_layer.h"
|
||||
#include "convolutional_layer.h"
|
||||
@ -14,27 +16,24 @@ network make_network(int n)
|
||||
return net;
|
||||
}
|
||||
|
||||
void run_network(image input, network net)
|
||||
void forward_network(network net, double *input)
|
||||
{
|
||||
int i;
|
||||
double *input_d = input.data;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
run_convolutional_layer(input, layer);
|
||||
forward_convolutional_layer(layer, input);
|
||||
input = layer.output;
|
||||
input_d = layer.output.data;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
run_connected_layer(input_d, layer);
|
||||
input_d = layer.output;
|
||||
forward_connected_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
run_maxpool_layer(input, layer);
|
||||
forward_maxpool_layer(layer, input);
|
||||
input = layer.output;
|
||||
input_d = layer.output.data;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -52,74 +51,112 @@ void update_network(network net, double step)
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, step);
|
||||
update_connected_layer(layer, step, .3, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void learn_network(image input, network net)
|
||||
double *get_network_output_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
} else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
double *get_network_output(network net)
|
||||
{
|
||||
return get_network_output_layer(net, net.n-1);
|
||||
}
|
||||
|
||||
double *get_network_delta_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
double *get_network_delta(network net)
|
||||
{
|
||||
return get_network_delta_layer(net, net.n-1);
|
||||
}
|
||||
|
||||
void learn_network(network net, double *input)
|
||||
{
|
||||
int i;
|
||||
image prev;
|
||||
double *prev_p;
|
||||
double *prev_input;
|
||||
double *prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
if(i == 0){
|
||||
prev = input;
|
||||
prev_p = prev.data;
|
||||
} else if(net.types[i-1] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i-1];
|
||||
prev = layer.output;
|
||||
prev_p = prev.data;
|
||||
} else if(net.types[i-1] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i-1];
|
||||
prev = layer.output;
|
||||
prev_p = prev.data;
|
||||
} else if(net.types[i-1] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i-1];
|
||||
prev_p = layer.output;
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
}else{
|
||||
prev_input = get_network_output_layer(net, i-1);
|
||||
prev_delta = get_network_delta_layer(net, i-1);
|
||||
}
|
||||
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
learn_convolutional_layer(prev, layer);
|
||||
learn_convolutional_layer(layer, prev_input);
|
||||
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
learn_connected_layer(prev_p, layer);
|
||||
learn_connected_layer(layer, prev_input);
|
||||
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double *get_network_output_layer(network net, int i)
|
||||
void train_network_batch(network net, batch b)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output.data;
|
||||
int i,j;
|
||||
int k = get_network_output_size(net);
|
||||
int correct = 0;
|
||||
for(i = 0; i < b.n; ++i){
|
||||
forward_network(net, b.images[i].data);
|
||||
image o = get_network_image(net);
|
||||
double *output = get_network_output(net);
|
||||
double *delta = get_network_delta(net);
|
||||
for(j = 0; j < k; ++j){
|
||||
//printf("%f %f\n", b.truth[i][j], output[j]);
|
||||
delta[j] = b.truth[i][j]-output[j];
|
||||
if(fabs(delta[j]) < .5) ++correct;
|
||||
//printf("%f\n", output[j]);
|
||||
}
|
||||
learn_network(net, b.images[i].data);
|
||||
update_network(net, .00001);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output.data;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
return 0;
|
||||
printf("Accuracy: %f\n", (double)correct/b.n);
|
||||
}
|
||||
|
||||
int get_network_output_size_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output.h*layer.output.w*layer.output.c;
|
||||
image output = get_convolutional_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output.h*layer.output.w*layer.output.c;
|
||||
image output = get_maxpool_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
@ -128,21 +165,21 @@ int get_network_output_size_layer(network net, int i)
|
||||
return 0;
|
||||
}
|
||||
|
||||
double *get_network_output(network net)
|
||||
int get_network_output_size(network net)
|
||||
{
|
||||
int i = net.n-1;
|
||||
return get_network_output_layer(net, i);
|
||||
return get_network_output_size_layer(net, i);
|
||||
}
|
||||
|
||||
image get_network_image_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
return get_convolutional_image(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
return get_maxpool_image(layer);
|
||||
}
|
||||
return make_image(0,0,0);
|
||||
}
|
||||
@ -151,15 +188,20 @@ image get_network_image(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
image m = get_network_image_layer(net, i);
|
||||
if(m.h != 0) return m;
|
||||
}
|
||||
return make_image(1,1,1);
|
||||
}
|
||||
|
||||
void visualize_network(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < 1; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
visualize_convolutional_layer(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user