mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
big change to images
This commit is contained in:
parent
1fd10265f8
commit
4f50e29365
@ -23,7 +23,7 @@ void train_captcha(char *cfgfile, char *weightfile)
|
||||
while(1){
|
||||
++i;
|
||||
time=clock();
|
||||
data train = load_data_captcha(paths, imgs, plist->size, 10, 60, 200);
|
||||
data train = load_data_captcha(paths, imgs, plist->size, 10, 200, 60);
|
||||
translate_data_rows(train, -128);
|
||||
scale_data_rows(train, 1./128);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
@ -56,11 +56,11 @@ void decode_captcha(char *cfgfile, char *weightfile)
|
||||
printf("Enter filename: ");
|
||||
fgets(filename, 256, stdin);
|
||||
strtok(filename, "\n");
|
||||
image im = load_image_color(filename, 57, 300);
|
||||
image im = load_image_color(filename, 300, 57);
|
||||
scale_image(im, 1./255.);
|
||||
float *X = im.data;
|
||||
float *predictions = network_predict(net, X);
|
||||
image out = float_to_image(57, 300, 1, predictions);
|
||||
image out = float_to_image(300, 57, 1, predictions);
|
||||
show_image(out, "decoded");
|
||||
cvWaitKey(0);
|
||||
free_image(im);
|
||||
@ -87,7 +87,7 @@ void encode_captcha(char *cfgfile, char *weightfile)
|
||||
while(1){
|
||||
++i;
|
||||
time=clock();
|
||||
data train = load_data_captcha_encode(paths, imgs, plist->size, 57, 300);
|
||||
data train = load_data_captcha_encode(paths, imgs, plist->size, 300, 57);
|
||||
scale_data_rows(train, 1./255);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
@ -118,7 +118,7 @@ void validate_captcha(char *cfgfile, char *weightfile)
|
||||
list *plist = get_paths("/data/captcha/solved.hard");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int imgs = plist->size;
|
||||
data valid = load_data_captcha(paths, imgs, 0, 10, 60, 200);
|
||||
data valid = load_data_captcha(paths, imgs, 0, 10, 200, 60);
|
||||
translate_data_rows(valid, -128);
|
||||
scale_data_rows(valid, 1./128);
|
||||
matrix pred = network_predict_data(net, valid);
|
||||
@ -157,7 +157,7 @@ void test_captcha(char *cfgfile, char *weightfile)
|
||||
//printf("Enter filename: ");
|
||||
fgets(filename, 256, stdin);
|
||||
strtok(filename, "\n");
|
||||
image im = load_image_color(filename, 60, 200);
|
||||
image im = load_image_color(filename, 200, 60);
|
||||
translate_image(im, -128);
|
||||
scale_image(im, 1/128.);
|
||||
float *X = im.data;
|
||||
|
@ -29,7 +29,7 @@ image get_convolutional_image(convolutional_layer layer)
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_convolutional_delta(convolutional_layer layer)
|
||||
@ -38,7 +38,7 @@ image get_convolutional_delta(convolutional_layer layer)
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
@ -217,42 +217,22 @@ image get_convolutional_filter(convolutional_layer layer, int i)
|
||||
int h = layer.size;
|
||||
int w = layer.size;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.filters+i*h*w*c);
|
||||
return float_to_image(w,h,c,layer.filters+i*h*w*c);
|
||||
}
|
||||
|
||||
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
|
||||
image *get_filters(convolutional_layer layer)
|
||||
{
|
||||
image *filters = calloc(layer.n, sizeof(image));
|
||||
int i,j,k,c;
|
||||
if(!prev_filters){
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
||||
}
|
||||
}
|
||||
else{
|
||||
image base = prev_filters[0];
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
image filter = get_convolutional_filter(layer, i);
|
||||
filters[i] = make_image(base.h, base.w, base.c);
|
||||
for(j = 0; j < layer.size; ++j){
|
||||
for(k = 0; k < layer.size; ++k){
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
float weight = get_pixel(filter, j, k, c);
|
||||
image prev_filter = copy_image(prev_filters[c]);
|
||||
scale_image(prev_filter, weight);
|
||||
add_into_image(prev_filter, filters[i], 0,0);
|
||||
free_image(prev_filter);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
int i;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
||||
{
|
||||
image *single_filters = weighted_sum_filters(layer, 0);
|
||||
image *single_filters = get_filters(layer);
|
||||
show_images(single_filters, layer.n, window);
|
||||
|
||||
image delta = get_convolutional_image(layer);
|
||||
|
@ -7,7 +7,7 @@ image get_crop_image(crop_layer layer)
|
||||
int h = layer.crop_height;
|
||||
int w = layer.crop_width;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip)
|
||||
|
45
src/data.c
45
src/data.c
@ -47,7 +47,7 @@ char **get_random_paths(char **paths, int n, int m)
|
||||
return random_paths;
|
||||
}
|
||||
|
||||
matrix load_image_paths(char **paths, int n, int h, int w)
|
||||
matrix load_image_paths(char **paths, int n, int w, int h)
|
||||
{
|
||||
int i;
|
||||
matrix X;
|
||||
@ -56,7 +56,7 @@ matrix load_image_paths(char **paths, int n, int h, int w)
|
||||
X.cols = 0;
|
||||
|
||||
for(i = 0; i < n; ++i){
|
||||
image im = load_image_color(paths[i], h, w);
|
||||
image im = load_image_color(paths[i], w, h);
|
||||
X.vals[i] = im.data;
|
||||
X.cols = im.h*im.w*im.c;
|
||||
}
|
||||
@ -207,12 +207,12 @@ void fill_truth_captcha(char *path, int n, float *truth)
|
||||
}
|
||||
}
|
||||
|
||||
data load_data_captcha(char **paths, int n, int m, int k, int h, int w)
|
||||
data load_data_captcha(char **paths, int n, int m, int k, int w, int h)
|
||||
{
|
||||
if(m) paths = get_random_paths(paths, n, m);
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.X = load_image_paths(paths, n, w, h);
|
||||
d.y = make_matrix(n, k*NUMCHARS);
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
@ -222,12 +222,12 @@ data load_data_captcha(char **paths, int n, int m, int k, int h, int w)
|
||||
return d;
|
||||
}
|
||||
|
||||
data load_data_captcha_encode(char **paths, int n, int m, int h, int w)
|
||||
data load_data_captcha_encode(char **paths, int n, int m, int w, int h)
|
||||
{
|
||||
if(m) paths = get_random_paths(paths, n, m);
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.X = load_image_paths(paths, n, w, h);
|
||||
d.X.cols = 17100;
|
||||
d.y = d.X;
|
||||
if(m) free(paths);
|
||||
@ -258,21 +258,6 @@ matrix load_labels_paths(char **paths, int n, char **labels, int k)
|
||||
return y;
|
||||
}
|
||||
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
|
||||
{
|
||||
list *plist = get_paths(filename);
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
int n = plist->size;
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.y = load_labels_paths(paths, n, labels, k);
|
||||
free_list_contents(plist);
|
||||
free_list(plist);
|
||||
free(paths);
|
||||
return d;
|
||||
}
|
||||
|
||||
char **get_labels(char *filename)
|
||||
{
|
||||
list *plist = get_paths(filename);
|
||||
@ -292,7 +277,7 @@ void free_data(data d)
|
||||
}
|
||||
}
|
||||
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int background)
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background)
|
||||
{
|
||||
char **random_paths = get_random_paths(paths, n, m);
|
||||
int i;
|
||||
@ -325,12 +310,12 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int classes,
|
||||
float sy = (float)sheight / oh;
|
||||
|
||||
int flip = rand()%2;
|
||||
image cropped = crop_image(orig, ptop, pleft, sheight, swidth);
|
||||
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
|
||||
float dx = ((float)pleft/ow)/sx;
|
||||
float dy = ((float)ptop /oh)/sy;
|
||||
|
||||
free_image(orig);
|
||||
image sized = resize_image(cropped, h, w);
|
||||
image sized = resize_image(cropped, w, h);
|
||||
free_image(cropped);
|
||||
if(flip) flip_image(sized);
|
||||
d.X.vals[i] = sized.data;
|
||||
@ -345,14 +330,14 @@ void *load_detection_thread(void *ptr)
|
||||
{
|
||||
printf("Loading data: %d\n", rand());
|
||||
struct load_args a = *(struct load_args*)ptr;
|
||||
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.num_boxes, a.background);
|
||||
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.w, a.h, a.num_boxes, a.background);
|
||||
translate_data_rows(*a.d, -128);
|
||||
scale_data_rows(*a.d, 1./128);
|
||||
free(ptr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int background, data *d)
|
||||
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d)
|
||||
{
|
||||
pthread_t thread;
|
||||
struct load_args *args = calloc(1, sizeof(struct load_args));
|
||||
@ -373,12 +358,12 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, in
|
||||
return thread;
|
||||
}
|
||||
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h)
|
||||
{
|
||||
if(m) paths = get_random_paths(paths, n, m);
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(paths, n, h, w);
|
||||
d.X = load_image_paths(paths, n, w, h);
|
||||
d.y = load_labels_paths(paths, n, labels, k);
|
||||
if(m) free(paths);
|
||||
return d;
|
||||
@ -387,14 +372,14 @@ data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
||||
void *load_in_thread(void *ptr)
|
||||
{
|
||||
struct load_args a = *(struct load_args*)ptr;
|
||||
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
|
||||
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.w, a.h);
|
||||
translate_data_rows(*a.d, -128);
|
||||
scale_data_rows(*a.d, 1./128);
|
||||
free(ptr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d)
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d)
|
||||
{
|
||||
pthread_t thread;
|
||||
struct load_args *args = calloc(1, sizeof(struct load_args));
|
||||
|
14
src/data.h
14
src/data.h
@ -27,17 +27,17 @@ typedef struct{
|
||||
void free_data(data d);
|
||||
|
||||
void print_letters(float *pred, int n);
|
||||
data load_data_captcha(char **paths, int n, int m, int k, int h, int w);
|
||||
data load_data_captcha_encode(char **paths, int n, int m, int h, int w);
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
|
||||
data load_data_captcha(char **paths, int n, int m, int k, int w, int h);
|
||||
data load_data_captcha_encode(char **paths, int n, int m, int w, int h);
|
||||
data load_data(char **paths, int n, int m, char **labels, int k, int w, int h);
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int w, int h, data *d);
|
||||
|
||||
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int background, data *d);
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int background);
|
||||
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int w, int h, int nh, int nw, int background, data *d);
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int w, int h, int num_boxes, int background);
|
||||
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
|
||||
data load_cifar10_data(char *filename);
|
||||
data load_all_cifar10();
|
||||
|
||||
list *get_paths(char *filename);
|
||||
char **get_labels(char *filename);
|
||||
void get_random_batch(data d, int n, float *X, float *y);
|
||||
|
@ -31,7 +31,7 @@ image get_deconvolutional_image(deconvolutional_layer layer)
|
||||
h = deconvolutional_out_height(layer);
|
||||
w = deconvolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_deconvolutional_delta(deconvolutional_layer layer)
|
||||
@ -40,7 +40,7 @@ image get_deconvolutional_delta(deconvolutional_layer layer)
|
||||
h = deconvolutional_out_height(layer);
|
||||
w = deconvolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
|
@ -83,14 +83,14 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
plist = get_paths("/home/pjreddie/data/voc/trainall.txt");
|
||||
}
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.h, net.w, side, side, background, &buffer);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
clock_t time;
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.h, net.w, side, side, background, &buffer);
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
|
||||
/*
|
||||
image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]);
|
||||
@ -124,6 +124,7 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
srand(time(0));
|
||||
|
||||
list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
|
||||
//list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt");
|
||||
//list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
@ -142,7 +143,7 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
|
||||
fprintf(stderr, "%d\n", m);
|
||||
data val, buffer;
|
||||
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.h, net.w, &buffer);
|
||||
pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer);
|
||||
clock_t time;
|
||||
for(i = 1; i <= splits; ++i){
|
||||
time=clock();
|
||||
@ -151,7 +152,7 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
|
||||
num = (i+1)*m/splits - i*m/splits;
|
||||
char **part = paths+(i*m/splits);
|
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.h, net.w, &buffer);
|
||||
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer);
|
||||
|
||||
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
|
||||
matrix pred = network_predict_data(net, val);
|
||||
@ -171,7 +172,9 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
h = h*h;
|
||||
float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
|
||||
w = w*w;
|
||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
|
||||
float prob = scale*pred.vals[j][k+class+background+nuisance];
|
||||
if(prob < .001) continue;
|
||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
451
src/image.c
451
src/image.c
@ -53,21 +53,6 @@ void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b
|
||||
}
|
||||
}
|
||||
|
||||
void jitter_image(image a, int h, int w, int dh, int dw)
|
||||
{
|
||||
int i,j,k;
|
||||
for(k = 0; k < a.c; ++k){
|
||||
for(i = 0; i < h; ++i){
|
||||
for(j = 0; j < w; ++j){
|
||||
int src = j + dw + (i+dh)*a.w + k*a.w*a.h;
|
||||
int dst = j + i*w + k*w*h;
|
||||
//printf("%d %d\n", src, dst);
|
||||
a.data[dst] = a.data[src];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void flip_image(image a)
|
||||
{
|
||||
int i,j,k;
|
||||
@ -87,7 +72,7 @@ void flip_image(image a)
|
||||
image image_distance(image a, image b)
|
||||
{
|
||||
int i,j;
|
||||
image dist = make_image(a.h, a.w, 1);
|
||||
image dist = make_image(a.w, a.h, 1);
|
||||
for(i = 0; i < a.c; ++i){
|
||||
for(j = 0; j < a.h*a.w; ++j){
|
||||
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2);
|
||||
@ -99,20 +84,14 @@ image image_distance(image a, image b)
|
||||
return dist;
|
||||
}
|
||||
|
||||
void subtract_image(image a, image b)
|
||||
void embed_image(image source, image dest, int dx, int dy)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i];
|
||||
}
|
||||
|
||||
void embed_image(image source, image dest, int h, int w)
|
||||
{
|
||||
int i,j,k;
|
||||
int x,y,k;
|
||||
for(k = 0; k < source.c; ++k){
|
||||
for(i = 0; i < source.h; ++i){
|
||||
for(j = 0; j < source.w; ++j){
|
||||
float val = get_pixel(source, i,j,k);
|
||||
set_pixel(dest, h+i, w+j, k, val);
|
||||
for(y = 0; y < source.h; ++y){
|
||||
for(x = 0; x < source.w; ++x){
|
||||
float val = get_pixel(source, x,y,k);
|
||||
set_pixel(dest, dx+x, dy+y, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -122,22 +101,17 @@ image collapse_image_layers(image source, int border)
|
||||
{
|
||||
int h = source.h;
|
||||
h = (h+border)*source.c - border;
|
||||
image dest = make_image(h, source.w, 1);
|
||||
image dest = make_image(source.w, h, 1);
|
||||
int i;
|
||||
for(i = 0; i < source.c; ++i){
|
||||
image layer = get_image_layer(source, i);
|
||||
int h_offset = i*(source.h+border);
|
||||
embed_image(layer, dest, h_offset, 0);
|
||||
embed_image(layer, dest, 0, h_offset);
|
||||
free_image(layer);
|
||||
}
|
||||
return dest;
|
||||
}
|
||||
|
||||
void z_normalize_image(image p)
|
||||
{
|
||||
normalize_array(p.data, p.h*p.w*p.c);
|
||||
}
|
||||
|
||||
void normalize_image(image p)
|
||||
{
|
||||
float *min = calloc(p.c, sizeof(float));
|
||||
@ -167,24 +141,6 @@ void normalize_image(image p)
|
||||
free(max);
|
||||
}
|
||||
|
||||
float avg_image_layer(image m, int l)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < m.h*m.w; ++i){
|
||||
sum += m.data[l*m.h*m.w + i];
|
||||
}
|
||||
return sum/(m.h*m.w);
|
||||
}
|
||||
|
||||
void threshold_image(image p, float t)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < p.w*p.h*p.c; ++i){
|
||||
if(p.data[i] < t) p.data[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
image copy_image(image p)
|
||||
{
|
||||
image copy = p;
|
||||
@ -196,7 +152,7 @@ image copy_image(image p)
|
||||
|
||||
void show_image(image p, char *name)
|
||||
{
|
||||
int i,j,k;
|
||||
int x,y,k;
|
||||
image copy = copy_image(p);
|
||||
normalize_image(copy);
|
||||
|
||||
@ -209,10 +165,10 @@ void show_image(image p, char *name)
|
||||
cvNamedWindow(buff, CV_WINDOW_AUTOSIZE);
|
||||
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
|
||||
++windows;
|
||||
for(i = 0; i < p.h; ++i){
|
||||
for(j = 0; j < p.w; ++j){
|
||||
for(y = 0; y < p.h; ++y){
|
||||
for(x = 0; x < p.w; ++x){
|
||||
for(k= 0; k < p.c; ++k){
|
||||
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
|
||||
disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -235,7 +191,7 @@ void show_image(image p, char *name)
|
||||
|
||||
void save_image(image p, char *name)
|
||||
{
|
||||
int i,j,k;
|
||||
int x,y,k;
|
||||
image copy = copy_image(p);
|
||||
normalize_image(copy);
|
||||
|
||||
@ -245,10 +201,10 @@ void save_image(image p, char *name)
|
||||
|
||||
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
|
||||
int step = disp->widthStep;
|
||||
for(i = 0; i < p.h; ++i){
|
||||
for(j = 0; j < p.w; ++j){
|
||||
for(y = 0; y < p.h; ++y){
|
||||
for(x = 0; x < p.w; ++x){
|
||||
for(k= 0; k < p.c; ++k){
|
||||
disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255);
|
||||
disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -276,7 +232,7 @@ void show_image_collapsed(image p, char *name)
|
||||
free_image(c);
|
||||
}
|
||||
|
||||
image make_empty_image(int h, int w, int c)
|
||||
image make_empty_image(int w, int h, int c)
|
||||
{
|
||||
image out;
|
||||
out.data = 0;
|
||||
@ -286,30 +242,20 @@ image make_empty_image(int h, int w, int c)
|
||||
return out;
|
||||
}
|
||||
|
||||
image make_image(int h, int w, int c)
|
||||
image make_image(int w, int h, int c)
|
||||
{
|
||||
image out = make_empty_image(h,w,c);
|
||||
image out = make_empty_image(w,h,c);
|
||||
out.data = calloc(h*w*c, sizeof(float));
|
||||
return out;
|
||||
}
|
||||
|
||||
image float_to_image(int h, int w, int c, float *data)
|
||||
image float_to_image(int w, int h, int c, float *data)
|
||||
{
|
||||
image out = make_empty_image(h,w,c);
|
||||
image out = make_empty_image(w,h,c);
|
||||
out.data = data;
|
||||
return out;
|
||||
}
|
||||
|
||||
void zero_image(image m)
|
||||
{
|
||||
memset(m.data, 0, m.h*m.w*m.c*sizeof(float));
|
||||
}
|
||||
|
||||
void zero_channel(image m, int c)
|
||||
{
|
||||
memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float));
|
||||
}
|
||||
|
||||
void rotate_image(image m)
|
||||
{
|
||||
int i,j;
|
||||
@ -322,29 +268,6 @@ void rotate_image(image m)
|
||||
}
|
||||
}
|
||||
|
||||
image make_random_image(int h, int w, int c)
|
||||
{
|
||||
image out = make_image(h,w,c);
|
||||
int i;
|
||||
for(i = 0; i < h*w*c; ++i){
|
||||
out.data[i] = rand_normal();
|
||||
//out.data[i] = rand()%3;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void add_into_image(image src, image dest, int h, int w)
|
||||
{
|
||||
int i,j,k;
|
||||
for(k = 0; k < src.c; ++k){
|
||||
for(i = 0; i < src.h; ++i){
|
||||
for(j = 0; j < src.w; ++j){
|
||||
add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void translate_image(image m, float s)
|
||||
{
|
||||
int i;
|
||||
@ -357,24 +280,6 @@ void scale_image(image m, float s)
|
||||
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s;
|
||||
}
|
||||
|
||||
image make_random_kernel(int size, int c, float scale)
|
||||
{
|
||||
int pad;
|
||||
if((pad=(size%2==0))) ++size;
|
||||
image out = make_random_image(size,size,c);
|
||||
scale_image(out, scale);
|
||||
int i,k;
|
||||
if(pad){
|
||||
for(k = 0; k < out.c; ++k){
|
||||
for(i = 0; i < size; ++i) {
|
||||
set_pixel(out, i, 0, k, 0);
|
||||
set_pixel(out, 0, i, k, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
image ipl_to_image(IplImage* src)
|
||||
{
|
||||
unsigned char *data = (unsigned char *)src->imageData;
|
||||
@ -382,7 +287,7 @@ image ipl_to_image(IplImage* src)
|
||||
int w = src->width;
|
||||
int c = src->nChannels;
|
||||
int step = src->widthStep;
|
||||
image out = make_image(h,w,c);
|
||||
image out = make_image(w, h, c);
|
||||
int i, j, k, count=0;;
|
||||
|
||||
for(k= 0; k < c; ++k){
|
||||
@ -395,47 +300,55 @@ image ipl_to_image(IplImage* src)
|
||||
return out;
|
||||
}
|
||||
|
||||
image crop_image(image im, int dr, int dc, int h, int w)
|
||||
image crop_image(image im, int dx, int dy, int w, int h)
|
||||
{
|
||||
image cropped = make_image(h, w, im.c);
|
||||
image cropped = make_image(w, h, im.c);
|
||||
int i, j, k;
|
||||
for(k = 0; k < im.c; ++k){
|
||||
for(j = 0; j < h; ++j){
|
||||
for(i = 0; i < w; ++i){
|
||||
int r = j + dr;
|
||||
int c = i + dc;
|
||||
int r = j + dy;
|
||||
int c = i + dx;
|
||||
float val = 128;
|
||||
if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
|
||||
val = get_pixel(im, r, c, k);
|
||||
val = get_pixel(im, c, r, k);
|
||||
}
|
||||
set_pixel(cropped, j, i, k, val);
|
||||
set_pixel(cropped, i, j, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
return cropped;
|
||||
}
|
||||
|
||||
// #wikipedia
|
||||
image resize_image(image im, int h, int w)
|
||||
float billinear_interpolate(image im, float x, float y, int c)
|
||||
{
|
||||
image resized = make_image(h, w, im.c);
|
||||
int ix = (int) x;
|
||||
int iy = (int) y;
|
||||
|
||||
float dx = x - ix;
|
||||
float dy = y - iy;
|
||||
|
||||
float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
|
||||
dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
|
||||
(1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) +
|
||||
dy * dx * get_pixel_extend(im, ix+1, iy+1, c);
|
||||
return val;
|
||||
}
|
||||
|
||||
// #wikipedia
|
||||
image resize_image(image im, int w, int h)
|
||||
{
|
||||
image resized = make_image(w, h, im.c);
|
||||
int r, c, k;
|
||||
float h_scale = (float)(im.h - 1) / (h - 1) - .00001;
|
||||
float w_scale = (float)(im.w - 1) / (w - 1) - .00001;
|
||||
float w_scale = (float)(im.w - 1) / (w - 1);
|
||||
float h_scale = (float)(im.h - 1) / (h - 1);
|
||||
for(k = 0; k < im.c; ++k){
|
||||
for(r = 0; r < h; ++r){
|
||||
for(c = 0; c < w; ++c){
|
||||
float sr = r*h_scale;
|
||||
float sc = c*w_scale;
|
||||
int ir = (int)sr;
|
||||
int ic = (int)sc;
|
||||
float x = sr-ir;
|
||||
float y = sc-ic;
|
||||
float val = (1-x) * (1-y) * get_pixel(im, ir, ic, k) +
|
||||
x * (1-y) * get_pixel(im, ir+1, ic, k) +
|
||||
(1-x) * y * get_pixel(im, ir, ic+1, k) +
|
||||
x * y * get_pixel(im, ir+1, ic+1, k);
|
||||
set_pixel(resized, r, c, k, val);
|
||||
float sx = c*w_scale;
|
||||
float sy = r*h_scale;
|
||||
float val = billinear_interpolate(im, sx, sy, k);
|
||||
set_pixel(resized, c, r, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -445,10 +358,10 @@ image resize_image(image im, int h, int w)
|
||||
void test_resize(char *filename)
|
||||
{
|
||||
image im = load_image(filename, 0,0);
|
||||
image small = resize_image(im, 63, 65);
|
||||
image big = resize_image(im, 512, 513);
|
||||
image crop = crop_image(im, 10, 50, 100, 100);
|
||||
image crop2 = crop_image(im, -50, -30, 400, 291);
|
||||
image small = resize_image(im, 65, 63);
|
||||
image big = resize_image(im, 513, 512);
|
||||
image crop = crop_image(im, 50, 10, 100, 100);
|
||||
image crop2 = crop_image(im, -30, -50, 291, 400);
|
||||
show_image(im, "original");
|
||||
show_image(small, "smaller");
|
||||
show_image(big, "bigger");
|
||||
@ -457,7 +370,7 @@ void test_resize(char *filename)
|
||||
cvWaitKey(0);
|
||||
}
|
||||
|
||||
image load_image_color(char *filename, int h, int w)
|
||||
image load_image_color(char *filename, int w, int h)
|
||||
{
|
||||
IplImage* src = 0;
|
||||
if( (src = cvLoadImage(filename, 1)) == 0 )
|
||||
@ -467,7 +380,7 @@ image load_image_color(char *filename, int h, int w)
|
||||
}
|
||||
image out = ipl_to_image(src);
|
||||
if((h && w) && (h != out.h || w != out.w)){
|
||||
image resized = resize_image(out, h, w);
|
||||
image resized = resize_image(out, w, h);
|
||||
free_image(out);
|
||||
out = resized;
|
||||
}
|
||||
@ -475,7 +388,7 @@ image load_image_color(char *filename, int h, int w)
|
||||
return out;
|
||||
}
|
||||
|
||||
image load_image(char *filename, int h, int w)
|
||||
image load_image(char *filename, int w, int h)
|
||||
{
|
||||
IplImage* src = 0;
|
||||
if( (src = cvLoadImage(filename,-1)) == 0 )
|
||||
@ -485,7 +398,7 @@ image load_image(char *filename, int h, int w)
|
||||
}
|
||||
image out = ipl_to_image(src);
|
||||
if((h && w) && (h != out.h || w != out.w)){
|
||||
image resized = resize_image(out, h, w);
|
||||
image resized = resize_image(out, w, h);
|
||||
free_image(out);
|
||||
out = resized;
|
||||
}
|
||||
@ -495,209 +408,28 @@ image load_image(char *filename, int h, int w)
|
||||
|
||||
image get_image_layer(image m, int l)
|
||||
{
|
||||
image out = make_image(m.h, m.w, 1);
|
||||
image out = make_image(m.w, m.h, 1);
|
||||
int i;
|
||||
for(i = 0; i < m.h*m.w; ++i){
|
||||
out.data[i] = m.data[i+l*m.h*m.w];
|
||||
}
|
||||
return out;
|
||||
}
|
||||
image get_sub_image(image m, int h, int w, int dh, int dw)
|
||||
{
|
||||
image out = make_image(dh, dw, m.c);
|
||||
int i,j,k;
|
||||
for(k = 0; k < out.c; ++k){
|
||||
for(i = 0; i < dh; ++i){
|
||||
for(j = 0; j < dw; ++j){
|
||||
float val = get_pixel(m, h+i, w+j, k);
|
||||
set_pixel(out, i, j, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
float get_pixel(image m, int x, int y, int c)
|
||||
{
|
||||
assert(x < m.h && y < m.w && c < m.c);
|
||||
return m.data[c*m.h*m.w + x*m.w + y];
|
||||
assert(x < m.w && y < m.h && c < m.c);
|
||||
return m.data[c*m.h*m.w + y*m.w + x];
|
||||
}
|
||||
float get_pixel_extend(image m, int x, int y, int c)
|
||||
{
|
||||
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0;
|
||||
if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0;
|
||||
return get_pixel(m, x, y, c);
|
||||
}
|
||||
void set_pixel(image m, int x, int y, int c, float val)
|
||||
{
|
||||
assert(x < m.h && y < m.w && c < m.c);
|
||||
m.data[c*m.h*m.w + x*m.w + y] = val;
|
||||
}
|
||||
void set_pixel_extend(image m, int x, int y, int c, float val)
|
||||
{
|
||||
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return;
|
||||
set_pixel(m, x, y, c, val);
|
||||
}
|
||||
|
||||
void add_pixel(image m, int x, int y, int c, float val)
|
||||
{
|
||||
assert(x < m.h && y < m.w && c < m.c);
|
||||
m.data[c*m.h*m.w + x*m.w + y] += val;
|
||||
}
|
||||
|
||||
void add_pixel_extend(image m, int x, int y, int c, float val)
|
||||
{
|
||||
if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return;
|
||||
add_pixel(m, x, y, c, val);
|
||||
}
|
||||
|
||||
void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge)
|
||||
{
|
||||
int x,y,i,j;
|
||||
int xstart, xend, ystart, yend;
|
||||
if(edge){
|
||||
xstart = ystart = 0;
|
||||
xend = m.h;
|
||||
yend = m.w;
|
||||
}else{
|
||||
xstart = kernel.h/2;
|
||||
ystart = kernel.w/2;
|
||||
xend = m.h-kernel.h/2;
|
||||
yend = m.w - kernel.w/2;
|
||||
}
|
||||
for(x = xstart; x < xend; x += stride){
|
||||
for(y = ystart; y < yend; y += stride){
|
||||
float sum = 0;
|
||||
for(i = 0; i < kernel.h; ++i){
|
||||
for(j = 0; j < kernel.w; ++j){
|
||||
sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc);
|
||||
}
|
||||
}
|
||||
add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float single_convolve(image m, image kernel, int x, int y)
|
||||
{
|
||||
float sum = 0;
|
||||
int i, j, k;
|
||||
for(i = 0; i < kernel.h; ++i){
|
||||
for(j = 0; j < kernel.w; ++j){
|
||||
for(k = 0; k < kernel.c; ++k){
|
||||
sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
void convolve(image m, image kernel, int stride, int channel, image out, int edge)
|
||||
{
|
||||
assert(m.c == kernel.c);
|
||||
int i;
|
||||
zero_channel(out, channel);
|
||||
for(i = 0; i < m.c; ++i){
|
||||
two_d_convolve(m, i, kernel, i, stride, out, channel, edge);
|
||||
}
|
||||
/*
|
||||
int j;
|
||||
for(i = 0; i < m.h; i += stride){
|
||||
for(j = 0; j < m.w; j += stride){
|
||||
float val = single_convolve(m, kernel, i, j);
|
||||
set_pixel(out, i/stride, j/stride, channel, val);
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void upsample_image(image m, int stride, image out)
|
||||
{
|
||||
int i,j,k;
|
||||
zero_image(out);
|
||||
for(k = 0; k < m.c; ++k){
|
||||
for(i = 0; i < m.h; ++i){
|
||||
for(j = 0; j< m.w; ++j){
|
||||
float val = get_pixel(m, i, j, k);
|
||||
set_pixel(out, i*stride, j*stride, k, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void single_update(image m, image update, int x, int y, float error)
|
||||
{
|
||||
int i, j, k;
|
||||
for(i = 0; i < update.h; ++i){
|
||||
for(j = 0; j < update.w; ++j){
|
||||
for(k = 0; k < update.c; ++k){
|
||||
float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k);
|
||||
add_pixel(update, i, j, k, val*error);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void kernel_update(image m, image update, int stride, int channel, image out, int edge)
|
||||
{
|
||||
assert(m.c == update.c);
|
||||
zero_image(update);
|
||||
int i, j, istart, jstart, iend, jend;
|
||||
if(edge){
|
||||
istart = jstart = 0;
|
||||
iend = m.h;
|
||||
jend = m.w;
|
||||
}else{
|
||||
istart = update.h/2;
|
||||
jstart = update.w/2;
|
||||
iend = m.h-update.h/2;
|
||||
jend = m.w - update.w/2;
|
||||
}
|
||||
for(i = istart; i < iend; i += stride){
|
||||
for(j = jstart; j < jend; j += stride){
|
||||
float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel);
|
||||
single_update(m, update, i, j, error);
|
||||
}
|
||||
}
|
||||
/*
|
||||
for(i = 0; i < update.h*update.w*update.c; ++i){
|
||||
update.data[i] /= (m.h/stride)*(m.w/stride);
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
void single_back_convolve(image m, image kernel, int x, int y, float val)
|
||||
{
|
||||
int i, j, k;
|
||||
for(i = 0; i < kernel.h; ++i){
|
||||
for(j = 0; j < kernel.w; ++j){
|
||||
for(k = 0; k < kernel.c; ++k){
|
||||
float pval = get_pixel(kernel, i, j, k) * val;
|
||||
add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void back_convolve(image m, image kernel, int stride, int channel, image out, int edge)
|
||||
{
|
||||
assert(m.c == kernel.c);
|
||||
int i, j, istart, jstart, iend, jend;
|
||||
if(edge){
|
||||
istart = jstart = 0;
|
||||
iend = m.h;
|
||||
jend = m.w;
|
||||
}else{
|
||||
istart = kernel.h/2;
|
||||
jstart = kernel.w/2;
|
||||
iend = m.h-kernel.h/2;
|
||||
jend = m.w - kernel.w/2;
|
||||
}
|
||||
for(i = istart; i < iend; i += stride){
|
||||
for(j = jstart; j < jend; j += stride){
|
||||
float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel);
|
||||
single_back_convolve(m, kernel, i, j, val);
|
||||
}
|
||||
}
|
||||
assert(x < m.w && y < m.h && c < m.c);
|
||||
m.data[c*m.h*m.w + y*m.w + x] = val;
|
||||
}
|
||||
|
||||
void print_image(image m)
|
||||
@ -730,20 +462,20 @@ image collapse_images_vert(image *ims, int n)
|
||||
c = 1;
|
||||
}
|
||||
|
||||
image filters = make_image(h,w,c);
|
||||
image filters = make_image(w, h, c);
|
||||
int i,j;
|
||||
for(i = 0; i < n; ++i){
|
||||
int h_offset = i*(ims[0].h+border);
|
||||
image copy = copy_image(ims[i]);
|
||||
//normalize_image(copy);
|
||||
if(c == 3 && color){
|
||||
embed_image(copy, filters, h_offset, 0);
|
||||
embed_image(copy, filters, 0, h_offset);
|
||||
}
|
||||
else{
|
||||
for(j = 0; j < copy.c; ++j){
|
||||
int w_offset = j*(ims[0].w+border);
|
||||
image layer = get_image_layer(copy, j);
|
||||
embed_image(layer, filters, h_offset, w_offset);
|
||||
embed_image(layer, filters, w_offset, h_offset);
|
||||
free_image(layer);
|
||||
}
|
||||
}
|
||||
@ -766,20 +498,20 @@ image collapse_images_horz(image *ims, int n)
|
||||
c = 1;
|
||||
}
|
||||
|
||||
image filters = make_image(h,w,c);
|
||||
image filters = make_image(w, h, c);
|
||||
int i,j;
|
||||
for(i = 0; i < n; ++i){
|
||||
int w_offset = i*(size+border);
|
||||
image copy = copy_image(ims[i]);
|
||||
//normalize_image(copy);
|
||||
if(c == 3 && color){
|
||||
embed_image(copy, filters, 0, w_offset);
|
||||
embed_image(copy, filters, w_offset, 0);
|
||||
}
|
||||
else{
|
||||
for(j = 0; j < copy.c; ++j){
|
||||
int h_offset = j*(size+border);
|
||||
image layer = get_image_layer(copy, j);
|
||||
embed_image(layer, filters, h_offset, w_offset);
|
||||
embed_image(layer, filters, w_offset, h_offset);
|
||||
free_image(layer);
|
||||
}
|
||||
}
|
||||
@ -796,43 +528,6 @@ void show_images(image *ims, int n, char *window)
|
||||
free_image(m);
|
||||
}
|
||||
|
||||
image grid_images(image **ims, int h, int w)
|
||||
{
|
||||
int i;
|
||||
image *rows = calloc(h, sizeof(image));
|
||||
for(i = 0; i < h; ++i){
|
||||
rows[i] = collapse_images_horz(ims[i], w);
|
||||
}
|
||||
image out = collapse_images_vert(rows, h);
|
||||
for(i = 0; i < h; ++i){
|
||||
free_image(rows[i]);
|
||||
}
|
||||
free(rows);
|
||||
return out;
|
||||
}
|
||||
|
||||
void test_grid()
|
||||
{
|
||||
int i,j;
|
||||
int num = 3;
|
||||
int topk = 3;
|
||||
image **vizs = calloc(num, sizeof(image*));
|
||||
for(i = 0; i < num; ++i){
|
||||
vizs[i] = calloc(topk, sizeof(image));
|
||||
for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3);
|
||||
}
|
||||
image grid = grid_images(vizs, num, topk);
|
||||
save_image(grid, "Test Grid");
|
||||
free_image(grid);
|
||||
}
|
||||
|
||||
void show_images_grid(image **ims, int h, int w, char *window)
|
||||
{
|
||||
image out = grid_images(ims, h, w);
|
||||
show_image(out, window);
|
||||
free_image(out);
|
||||
}
|
||||
|
||||
void free_image(image m)
|
||||
{
|
||||
free(m.data);
|
||||
|
39
src/image.h
39
src/image.h
@ -12,61 +12,44 @@ typedef struct {
|
||||
} image;
|
||||
|
||||
float get_color(int c, int x, int max);
|
||||
void jitter_image(image a, int h, int w, int dh, int dw);
|
||||
void flip_image(image a);
|
||||
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b);
|
||||
image image_distance(image a, image b);
|
||||
void scale_image(image m, float s);
|
||||
image crop_image(image im, int dr, int dc, int h, int w);
|
||||
image resize_image(image im, int h, int w);
|
||||
image crop_image(image im, int dx, int dy, int w, int h);
|
||||
image resize_image(image im, int w, int h);
|
||||
void translate_image(image m, float s);
|
||||
void normalize_image(image p);
|
||||
void z_normalize_image(image p);
|
||||
void threshold_image(image p, float t);
|
||||
void zero_image(image m);
|
||||
void rotate_image(image m);
|
||||
void subtract_image(image a, image b);
|
||||
float avg_image_layer(image m, int l);
|
||||
void embed_image(image source, image dest, int h, int w);
|
||||
void add_into_image(image src, image dest, int h, int w);
|
||||
void embed_image(image source, image dest, int dx, int dy);
|
||||
|
||||
image collapse_image_layers(image source, int border);
|
||||
image collapse_images_horz(image *ims, int n);
|
||||
image collapse_images_vert(image *ims, int n);
|
||||
image get_sub_image(image m, int h, int w, int dh, int dw);
|
||||
|
||||
void show_image(image p, char *name);
|
||||
void save_image(image p, char *name);
|
||||
void show_images(image *ims, int n, char *window);
|
||||
void show_image_layers(image p, char *name);
|
||||
void show_image_collapsed(image p, char *name);
|
||||
void show_images_grid(image **ims, int h, int w, char *window);
|
||||
void test_grid();
|
||||
image grid_images(image **ims, int h, int w);
|
||||
|
||||
void print_image(image m);
|
||||
|
||||
image make_image(int h, int w, int c);
|
||||
image make_empty_image(int h, int w, int c);
|
||||
image make_random_image(int h, int w, int c);
|
||||
image make_random_kernel(int size, int c, float scale);
|
||||
image float_to_image(int h, int w, int c, float *data);
|
||||
image make_image(int w, int h, int c);
|
||||
image make_empty_image(int w, int h, int c);
|
||||
image float_to_image(int w, int h, int c, float *data);
|
||||
image copy_image(image p);
|
||||
image load_image(char *filename, int h, int w);
|
||||
image load_image_color(char *filename, int h, int w);
|
||||
image load_image(char *filename, int w, int h);
|
||||
image load_image_color(char *filename, int w, int h);
|
||||
|
||||
image ipl_to_image(IplImage* src);
|
||||
|
||||
float get_pixel(image m, int x, int y, int c);
|
||||
float get_pixel_extend(image m, int x, int y, int c);
|
||||
void add_pixel(image m, int x, int y, int c, float val);
|
||||
void set_pixel(image m, int x, int y, int c, float val);
|
||||
|
||||
image get_image_layer(image m, int l);
|
||||
|
||||
void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge);
|
||||
void upsample_image(image m, int stride, image out);
|
||||
void convolve(image m, image kernel, int stride, int channel, image out, int edge);
|
||||
void back_convolve(image m, image kernel, int stride, int channel, image out, int edge);
|
||||
void kernel_update(image m, image update, int stride, int channel, image out, int edge);
|
||||
|
||||
void free_image(image m);
|
||||
void test_resize(char *filename);
|
||||
#endif
|
||||
|
@ -7,7 +7,7 @@ image get_maxpool_image(maxpool_layer layer)
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_maxpool_delta(maxpool_layer layer)
|
||||
@ -15,7 +15,7 @@ image get_maxpool_delta(maxpool_layer layer)
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride)
|
||||
|
@ -6,7 +6,7 @@ image get_normalization_image(normalization_layer layer)
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.output);
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_normalization_delta(normalization_layer layer)
|
||||
@ -14,7 +14,7 @@ image get_normalization_delta(normalization_layer layer)
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(h,w,c,layer.delta);
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
|
||||
|
@ -6,5 +6,6 @@ network parse_network_cfg(char *filename);
|
||||
void save_network(network net, char *filename);
|
||||
void save_weights(network net, char *filename);
|
||||
void load_weights(network *net, char *filename);
|
||||
void load_weights_upto(network *net, char *filename, int cutoff);
|
||||
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user