mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
route handles input images well....ish
This commit is contained in:
parent
dc0d7bb8a8
commit
516f019ba6
2
Makefile
2
Makefile
@ -25,7 +25,7 @@ CFLAGS+=-DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o
|
||||
ifeq ($(GPU), 1)
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
|
||||
endif
|
||||
|
@ -9,99 +9,97 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
connected_layer l = {0};
|
||||
l.type = CONNECTED;
|
||||
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
layer->batch=batch;
|
||||
l.inputs = inputs;
|
||||
l.outputs = outputs;
|
||||
l.batch=batch;
|
||||
|
||||
layer->output = calloc(batch*outputs, sizeof(float*));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
l.output = calloc(batch*outputs, sizeof(float*));
|
||||
l.delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_updates = calloc(outputs, sizeof(float));
|
||||
l.weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
l.bias_updates = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weight_prev = calloc(inputs*outputs, sizeof(float));
|
||||
layer->bias_prev = calloc(outputs, sizeof(float));
|
||||
|
||||
layer->weights = calloc(inputs*outputs, sizeof(float));
|
||||
layer->biases = calloc(outputs, sizeof(float));
|
||||
l.weights = calloc(inputs*outputs, sizeof(float));
|
||||
l.biases = calloc(outputs, sizeof(float));
|
||||
|
||||
|
||||
float scale = 1./sqrt(inputs);
|
||||
for(i = 0; i < inputs*outputs; ++i){
|
||||
layer->weights[i] = 2*scale*rand_uniform() - scale;
|
||||
l.weights[i] = 2*scale*rand_uniform() - scale;
|
||||
}
|
||||
|
||||
for(i = 0; i < outputs; ++i){
|
||||
layer->biases[i] = scale;
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs);
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, outputs);
|
||||
l.weights_gpu = cuda_make_array(l.weights, inputs*outputs);
|
||||
l.biases_gpu = cuda_make_array(l.biases, outputs);
|
||||
|
||||
layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs);
|
||||
l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs);
|
||||
|
||||
layer->output_gpu = cuda_make_array(layer->output, outputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch);
|
||||
l.output_gpu = cuda_make_array(l.output, outputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
l.activation = activation;
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.outputs, momentum, layer.bias_updates, 1);
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1);
|
||||
axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1);
|
||||
scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1);
|
||||
axpy_cpu(l.inputs*l.outputs, -decay*batch, l.weights, 1, l.weight_updates, 1);
|
||||
axpy_cpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
|
||||
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer(connected_layer layer, network_state state)
|
||||
void forward_connected_layer(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
float *a = state.input;
|
||||
float *b = layer.weights;
|
||||
float *c = layer.output;
|
||||
float *b = l.weights;
|
||||
float *c = l.output;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array(layer.output, layer.outputs*layer.batch, layer.activation);
|
||||
activate_array(l.output, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer(connected_layer layer, network_state state)
|
||||
void backward_connected_layer(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1);
|
||||
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
int m = l.inputs;
|
||||
int k = l.batch;
|
||||
int n = l.outputs;
|
||||
float *a = state.input;
|
||||
float *b = layer.delta;
|
||||
float *c = layer.weight_updates;
|
||||
float *b = l.delta;
|
||||
float *c = l.weight_updates;
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
m = l.batch;
|
||||
k = l.outputs;
|
||||
n = l.inputs;
|
||||
|
||||
a = layer.delta;
|
||||
b = layer.weights;
|
||||
a = l.delta;
|
||||
b = l.weights;
|
||||
c = state.delta;
|
||||
|
||||
if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
@ -109,69 +107,69 @@ void backward_connected_layer(connected_layer layer, network_state state)
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_connected_layer(connected_layer layer)
|
||||
void pull_connected_layer(connected_layer l)
|
||||
{
|
||||
cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer layer)
|
||||
void push_connected_layer(connected_layer l)
|
||||
{
|
||||
cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs);
|
||||
cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs);
|
||||
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs);
|
||||
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
||||
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.inputs*l.outputs);
|
||||
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.outputs);
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
|
||||
scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1);
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1);
|
||||
scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer layer, network_state state)
|
||||
void forward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu_offset(l.outputs, l.biases_gpu, 0, 1, l.output_gpu, i*l.outputs, 1);
|
||||
}
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
int m = l.batch;
|
||||
int k = l.inputs;
|
||||
int n = l.outputs;
|
||||
float * a = state.input;
|
||||
float * b = layer.weights_gpu;
|
||||
float * c = layer.output_gpu;
|
||||
float * b = l.weights_gpu;
|
||||
float * c = l.output_gpu;
|
||||
gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer layer, network_state state)
|
||||
void backward_connected_layer_gpu(connected_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1);
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1);
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
int m = l.inputs;
|
||||
int k = l.batch;
|
||||
int n = l.outputs;
|
||||
float * a = state.input;
|
||||
float * b = layer.delta_gpu;
|
||||
float * c = layer.weight_updates_gpu;
|
||||
float * b = l.delta_gpu;
|
||||
float * c = l.weight_updates_gpu;
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n);
|
||||
|
||||
m = layer.batch;
|
||||
k = layer.outputs;
|
||||
n = layer.inputs;
|
||||
m = l.batch;
|
||||
k = l.outputs;
|
||||
n = l.inputs;
|
||||
|
||||
a = layer.delta_gpu;
|
||||
b = layer.weights_gpu;
|
||||
a = l.delta_gpu;
|
||||
b = l.weights_gpu;
|
||||
c = state.delta;
|
||||
|
||||
if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n);
|
||||
|
@ -3,38 +3,11 @@
|
||||
|
||||
#include "activations.h"
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
int inputs;
|
||||
int outputs;
|
||||
float *weights;
|
||||
float *biases;
|
||||
typedef layer connected_layer;
|
||||
|
||||
float *weight_updates;
|
||||
float *bias_updates;
|
||||
|
||||
float *weight_prev;
|
||||
float *bias_prev;
|
||||
|
||||
float *output;
|
||||
float *delta;
|
||||
|
||||
#ifdef GPU
|
||||
float * weights_gpu;
|
||||
float * biases_gpu;
|
||||
|
||||
float * weight_updates_gpu;
|
||||
float * bias_updates_gpu;
|
||||
|
||||
float * output_gpu;
|
||||
float * delta_gpu;
|
||||
#endif
|
||||
ACTIVATION activation;
|
||||
|
||||
} connected_layer;
|
||||
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
|
||||
|
||||
void forward_connected_layer(connected_layer layer, network_state state);
|
||||
void backward_connected_layer(connected_layer layer, network_state state);
|
||||
|
@ -7,111 +7,117 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
int convolutional_out_height(convolutional_layer layer)
|
||||
int convolutional_out_height(convolutional_layer l)
|
||||
{
|
||||
int h = layer.h;
|
||||
if (!layer.pad) h -= layer.size;
|
||||
int h = l.h;
|
||||
if (!l.pad) h -= l.size;
|
||||
else h -= 1;
|
||||
return h/layer.stride + 1;
|
||||
return h/l.stride + 1;
|
||||
}
|
||||
|
||||
int convolutional_out_width(convolutional_layer layer)
|
||||
int convolutional_out_width(convolutional_layer l)
|
||||
{
|
||||
int w = layer.w;
|
||||
if (!layer.pad) w -= layer.size;
|
||||
int w = l.w;
|
||||
if (!l.pad) w -= l.size;
|
||||
else w -= 1;
|
||||
return w/layer.stride + 1;
|
||||
return w/l.stride + 1;
|
||||
}
|
||||
|
||||
image get_convolutional_image(convolutional_layer layer)
|
||||
image get_convolutional_image(convolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
h = convolutional_out_height(l);
|
||||
w = convolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.output);
|
||||
}
|
||||
|
||||
image get_convolutional_delta(convolutional_layer layer)
|
||||
image get_convolutional_delta(convolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = convolutional_out_height(layer);
|
||||
w = convolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
h = convolutional_out_height(l);
|
||||
w = convolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
||||
convolutional_layer l = {0};
|
||||
l.type = CONVOLUTIONAL;
|
||||
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->n = n;
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
layer->pad = pad;
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
l.pad = pad;
|
||||
|
||||
layer->filters = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
l.filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
|
||||
layer->biases = calloc(n, sizeof(float));
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
l.bias_updates = calloc(n, sizeof(float));
|
||||
float scale = 1./sqrt(size*size*c);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
|
||||
for(i = 0; i < n; ++i){
|
||||
layer->biases[i] = scale;
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
l.out_h = out_h;
|
||||
l.out_w = out_w;
|
||||
l.out_c = n;
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
||||
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
|
||||
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
||||
l.biases_gpu = cuda_make_array(l.biases, n);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
|
||||
void resize_convolutional_layer(convolutional_layer *l, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
l->h = h;
|
||||
l->w = w;
|
||||
int out_h = convolutional_out_height(*l);
|
||||
int out_w = convolutional_out_width(*l);
|
||||
|
||||
layer->col_image = realloc(layer->col_image,
|
||||
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
layer->output = realloc(layer->output,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
layer->delta = realloc(layer->delta,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
l->col_image = realloc(l->col_image,
|
||||
out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
||||
l->output = realloc(l->output,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
l->delta = realloc(l->delta,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
cuda_free(layer->col_image_gpu);
|
||||
cuda_free(layer->delta_gpu);
|
||||
cuda_free(layer->output_gpu);
|
||||
cuda_free(l->col_image_gpu);
|
||||
cuda_free(l->delta_gpu);
|
||||
cuda_free(l->output_gpu);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
|
||||
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -138,104 +144,104 @@ void backward_bias(float *bias_updates, float *delta, int batch, int n, int size
|
||||
}
|
||||
|
||||
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
|
||||
void forward_convolutional_layer(const convolutional_layer l, network_state state)
|
||||
{
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
int i;
|
||||
|
||||
bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
|
||||
bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
float *a = l.filters;
|
||||
float *b = l.col_image;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(state.input, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
c += n*m;
|
||||
state.input += layer.c*layer.h*layer.w;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
activate_array(layer.output, m*n*layer.batch, layer.activation);
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, network_state state)
|
||||
void backward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
int m = l.n;
|
||||
int n = l.size*l.size*l.c;
|
||||
int k = convolutional_out_height(l)*
|
||||
convolutional_out_width(l);
|
||||
|
||||
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
||||
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
|
||||
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
|
||||
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
|
||||
|
||||
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float *a = layer.delta + i*m*k;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *a = l.delta + i*m*k;
|
||||
float *b = l.col_image;
|
||||
float *c = l.filter_updates;
|
||||
|
||||
float *im = state.input+i*layer.c*layer.h*layer.w;
|
||||
float *im = state.input+i*l.c*l.h*l.w;
|
||||
|
||||
im2col_cpu(im, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
im2col_cpu(im, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
a = layer.filters;
|
||||
b = layer.delta + i*m*k;
|
||||
c = layer.col_image;
|
||||
a = l.filters;
|
||||
b = l.delta + i*m*k;
|
||||
c = l.col_image;
|
||||
|
||||
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
||||
|
||||
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
|
||||
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
|
||||
scal_cpu(size, momentum, layer.filter_updates, 1);
|
||||
axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
|
||||
scal_cpu(size, momentum, l.filter_updates, 1);
|
||||
}
|
||||
|
||||
|
||||
image get_convolutional_filter(convolutional_layer layer, int i)
|
||||
image get_convolutional_filter(convolutional_layer l, int i)
|
||||
{
|
||||
int h = layer.size;
|
||||
int w = layer.size;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.filters+i*h*w*c);
|
||||
int h = l.size;
|
||||
int w = l.size;
|
||||
int c = l.c;
|
||||
return float_to_image(w,h,c,l.filters+i*h*w*c);
|
||||
}
|
||||
|
||||
image *get_filters(convolutional_layer layer)
|
||||
image *get_filters(convolutional_layer l)
|
||||
{
|
||||
image *filters = calloc(layer.n, sizeof(image));
|
||||
image *filters = calloc(l.n, sizeof(image));
|
||||
int i;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
||||
for(i = 0; i < l.n; ++i){
|
||||
filters[i] = copy_image(get_convolutional_filter(l, i));
|
||||
}
|
||||
return filters;
|
||||
}
|
||||
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
||||
image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters)
|
||||
{
|
||||
image *single_filters = get_filters(layer);
|
||||
show_images(single_filters, layer.n, window);
|
||||
image *single_filters = get_filters(l);
|
||||
show_images(single_filters, l.n, window);
|
||||
|
||||
image delta = get_convolutional_image(layer);
|
||||
image delta = get_convolutional_image(l);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
|
@ -5,38 +5,9 @@
|
||||
#include "params.h"
|
||||
#include "image.h"
|
||||
#include "activations.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int n;
|
||||
int size;
|
||||
int stride;
|
||||
int pad;
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
|
||||
float *col_image;
|
||||
float *delta;
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
float * filters_gpu;
|
||||
float * filter_updates_gpu;
|
||||
|
||||
float * biases_gpu;
|
||||
float * bias_updates_gpu;
|
||||
|
||||
float * col_image_gpu;
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
|
||||
ACTIVATION activation;
|
||||
} convolutional_layer;
|
||||
typedef layer convolutional_layer;
|
||||
|
||||
#ifdef GPU
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state);
|
||||
@ -50,7 +21,7 @@ void bias_output_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size);
|
||||
#endif
|
||||
|
||||
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int h, int w);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network_state state);
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
|
@ -26,70 +26,73 @@ char *get_cost_string(COST_TYPE a)
|
||||
return "sse";
|
||||
}
|
||||
|
||||
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type)
|
||||
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type)
|
||||
{
|
||||
fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
|
||||
cost_layer *layer = calloc(1, sizeof(cost_layer));
|
||||
layer->batch = batch;
|
||||
layer->inputs = inputs;
|
||||
layer->type = type;
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
layer->output = calloc(1, sizeof(float));
|
||||
cost_layer l = {0};
|
||||
l.type = COST;
|
||||
|
||||
l.batch = batch;
|
||||
l.inputs = inputs;
|
||||
l.outputs = inputs;
|
||||
l.cost_type = cost_type;
|
||||
l.delta = calloc(inputs*batch, sizeof(float));
|
||||
l.output = calloc(1, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void forward_cost_layer(cost_layer layer, network_state state)
|
||||
void forward_cost_layer(cost_layer l, network_state state)
|
||||
{
|
||||
if (!state.truth) return;
|
||||
if(layer.type == MASKED){
|
||||
if(l.cost_type == MASKED){
|
||||
int i;
|
||||
for(i = 0; i < layer.batch*layer.inputs; ++i){
|
||||
for(i = 0; i < l.batch*l.inputs; ++i){
|
||||
if(state.truth[i] == 0) state.input[i] = 0;
|
||||
}
|
||||
}
|
||||
copy_cpu(layer.batch*layer.inputs, state.truth, 1, layer.delta, 1);
|
||||
axpy_cpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta, 1);
|
||||
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
||||
//printf("cost: %f\n", *layer.output);
|
||||
copy_cpu(l.batch*l.inputs, state.truth, 1, l.delta, 1);
|
||||
axpy_cpu(l.batch*l.inputs, -1, state.input, 1, l.delta, 1);
|
||||
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
|
||||
//printf("cost: %f\n", *l.output);
|
||||
}
|
||||
|
||||
void backward_cost_layer(const cost_layer layer, network_state state)
|
||||
void backward_cost_layer(const cost_layer l, network_state state)
|
||||
{
|
||||
copy_cpu(layer.batch*layer.inputs, layer.delta, 1, state.delta, 1);
|
||||
copy_cpu(l.batch*l.inputs, l.delta, 1, state.delta, 1);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_cost_layer(cost_layer layer)
|
||||
void pull_cost_layer(cost_layer l)
|
||||
{
|
||||
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
|
||||
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
||||
}
|
||||
|
||||
void push_cost_layer(cost_layer layer)
|
||||
void push_cost_layer(cost_layer l)
|
||||
{
|
||||
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
|
||||
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
||||
}
|
||||
|
||||
void forward_cost_layer_gpu(cost_layer layer, network_state state)
|
||||
void forward_cost_layer_gpu(cost_layer l, network_state state)
|
||||
{
|
||||
if (!state.truth) return;
|
||||
if (layer.type == MASKED) {
|
||||
mask_ongpu(layer.batch*layer.inputs, state.input, state.truth);
|
||||
if (l.cost_type == MASKED) {
|
||||
mask_ongpu(l.batch*l.inputs, state.input, state.truth);
|
||||
}
|
||||
|
||||
copy_ongpu(layer.batch*layer.inputs, state.truth, 1, layer.delta_gpu, 1);
|
||||
axpy_ongpu(layer.batch*layer.inputs, -1, state.input, 1, layer.delta_gpu, 1);
|
||||
copy_ongpu(l.batch*l.inputs, state.truth, 1, l.delta_gpu, 1);
|
||||
axpy_ongpu(l.batch*l.inputs, -1, state.input, 1, l.delta_gpu, 1);
|
||||
|
||||
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
|
||||
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
||||
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs);
|
||||
*(l.output) = dot_cpu(l.batch*l.inputs, l.delta, 1, l.delta, 1);
|
||||
}
|
||||
|
||||
void backward_cost_layer_gpu(const cost_layer layer, network_state state)
|
||||
void backward_cost_layer_gpu(const cost_layer l, network_state state)
|
||||
{
|
||||
copy_ongpu(layer.batch*layer.inputs, layer.delta_gpu, 1, state.delta, 1);
|
||||
copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -1,33 +1,19 @@
|
||||
#ifndef COST_LAYER_H
|
||||
#define COST_LAYER_H
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef enum{
|
||||
SSE, MASKED
|
||||
} COST_TYPE;
|
||||
|
||||
typedef struct {
|
||||
int inputs;
|
||||
int batch;
|
||||
int coords;
|
||||
int classes;
|
||||
float *delta;
|
||||
float *output;
|
||||
COST_TYPE type;
|
||||
#ifdef GPU
|
||||
float * delta_gpu;
|
||||
#endif
|
||||
} cost_layer;
|
||||
typedef layer cost_layer;
|
||||
|
||||
COST_TYPE get_cost_type(char *s);
|
||||
char *get_cost_string(COST_TYPE a);
|
||||
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type);
|
||||
void forward_cost_layer(const cost_layer layer, network_state state);
|
||||
void backward_cost_layer(const cost_layer layer, network_state state);
|
||||
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE type);
|
||||
void forward_cost_layer(const cost_layer l, network_state state);
|
||||
void backward_cost_layer(const cost_layer l, network_state state);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_cost_layer_gpu(cost_layer layer, network_state state);
|
||||
void backward_cost_layer_gpu(const cost_layer layer, network_state state);
|
||||
void forward_cost_layer_gpu(cost_layer l, network_state state);
|
||||
void backward_cost_layer_gpu(const cost_layer l, network_state state);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -2,63 +2,69 @@
|
||||
#include "cuda.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_crop_image(crop_layer layer)
|
||||
image get_crop_image(crop_layer l)
|
||||
{
|
||||
int h = layer.crop_height;
|
||||
int w = layer.crop_width;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
int h = l.out_h;
|
||||
int w = l.out_w;
|
||||
int c = l.out_c;
|
||||
return float_to_image(w,h,c,l.output);
|
||||
}
|
||||
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
|
||||
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure)
|
||||
{
|
||||
fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c);
|
||||
crop_layer *layer = calloc(1, sizeof(crop_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->flip = flip;
|
||||
layer->angle = angle;
|
||||
layer->saturation = saturation;
|
||||
layer->exposure = exposure;
|
||||
layer->crop_width = crop_width;
|
||||
layer->crop_height = crop_height;
|
||||
layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
crop_layer l = {0};
|
||||
l.type = CROP;
|
||||
l.batch = batch;
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.flip = flip;
|
||||
l.angle = angle;
|
||||
l.saturation = saturation;
|
||||
l.exposure = exposure;
|
||||
l.crop_width = crop_width;
|
||||
l.crop_height = crop_height;
|
||||
l.out_w = crop_width;
|
||||
l.out_h = crop_height;
|
||||
l.out_c = c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
l.outputs = l.out_w * l.out_h * l.out_c;
|
||||
l.output = calloc(crop_width*crop_height * c*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch);
|
||||
layer->rand_gpu = cuda_make_array(0, layer->batch*8);
|
||||
l.output_gpu = cuda_make_array(l.output, crop_width*crop_height*c*batch);
|
||||
l.rand_gpu = cuda_make_array(0, l.batch*8);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void forward_crop_layer(const crop_layer layer, network_state state)
|
||||
void forward_crop_layer(const crop_layer l, network_state state)
|
||||
{
|
||||
int i,j,c,b,row,col;
|
||||
int index;
|
||||
int count = 0;
|
||||
int flip = (layer.flip && rand()%2);
|
||||
int dh = rand()%(layer.h - layer.crop_height + 1);
|
||||
int dw = rand()%(layer.w - layer.crop_width + 1);
|
||||
int flip = (l.flip && rand()%2);
|
||||
int dh = rand()%(l.h - l.crop_height + 1);
|
||||
int dw = rand()%(l.w - l.crop_width + 1);
|
||||
float scale = 2;
|
||||
float trans = -1;
|
||||
if(!state.train){
|
||||
flip = 0;
|
||||
dh = (layer.h - layer.crop_height)/2;
|
||||
dw = (layer.w - layer.crop_width)/2;
|
||||
dh = (l.h - l.crop_height)/2;
|
||||
dw = (l.w - l.crop_width)/2;
|
||||
}
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(c = 0; c < layer.c; ++c){
|
||||
for(i = 0; i < layer.crop_height; ++i){
|
||||
for(j = 0; j < layer.crop_width; ++j){
|
||||
for(b = 0; b < l.batch; ++b){
|
||||
for(c = 0; c < l.c; ++c){
|
||||
for(i = 0; i < l.crop_height; ++i){
|
||||
for(j = 0; j < l.crop_width; ++j){
|
||||
if(flip){
|
||||
col = layer.w - dw - j - 1;
|
||||
col = l.w - dw - j - 1;
|
||||
}else{
|
||||
col = j + dw;
|
||||
}
|
||||
row = i + dh;
|
||||
index = col+layer.w*(row+layer.h*(c + layer.c*b));
|
||||
layer.output[count++] = state.input[index]*scale + trans;
|
||||
index = col+l.w*(row+l.h*(c + l.c*b));
|
||||
l.output[count++] = state.input[index]*scale + trans;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -3,29 +3,16 @@
|
||||
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int crop_width;
|
||||
int crop_height;
|
||||
int flip;
|
||||
float angle;
|
||||
float saturation;
|
||||
float exposure;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
float *output_gpu;
|
||||
float *rand_gpu;
|
||||
#endif
|
||||
} crop_layer;
|
||||
typedef layer crop_layer;
|
||||
|
||||
image get_crop_image(crop_layer layer);
|
||||
crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure);
|
||||
void forward_crop_layer(const crop_layer layer, network_state state);
|
||||
image get_crop_image(crop_layer l);
|
||||
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure);
|
||||
void forward_crop_layer(const crop_layer l, network_state state);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_crop_layer_gpu(crop_layer layer, network_state state);
|
||||
void forward_crop_layer_gpu(crop_layer l, network_state state);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -72,15 +72,6 @@ void partial(char *cfgfile, char *weightfile, char *outfile, int max)
|
||||
save_weights(net, outfile);
|
||||
}
|
||||
|
||||
void convert(char *cfgfile, char *outfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
save_network(net, outfile);
|
||||
}
|
||||
|
||||
void visualize(char *cfgfile, char *weightfile)
|
||||
{
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
@ -120,8 +111,6 @@ int main(int argc, char **argv)
|
||||
run_captcha(argc, argv);
|
||||
} else if (0 == strcmp(argv[1], "change")){
|
||||
change_rate(argv[2], atof(argv[3]), (argc > 4) ? atof(argv[4]) : 0);
|
||||
} else if (0 == strcmp(argv[1], "convert")){
|
||||
convert(argv[2], argv[3], (argc > 4) ? argv[4] : 0);
|
||||
} else if (0 == strcmp(argv[1], "partial")){
|
||||
partial(argv[2], argv[3], argv[4], atoi(argv[5]));
|
||||
} else if (0 == strcmp(argv[1], "visualize")){
|
||||
|
@ -174,7 +174,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
|
||||
}
|
||||
|
||||
int index = (i+j*num_boxes)*(4+classes+background);
|
||||
if(truth[index+classes+background+2]) continue;
|
||||
//if(truth[index+classes+background+2]) continue;
|
||||
if(background) truth[index++] = 0;
|
||||
truth[index+id] = 1;
|
||||
index += classes;
|
||||
|
@ -8,172 +8,179 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
int deconvolutional_out_height(deconvolutional_layer layer)
|
||||
int deconvolutional_out_height(deconvolutional_layer l)
|
||||
{
|
||||
int h = layer.stride*(layer.h - 1) + layer.size;
|
||||
int h = l.stride*(l.h - 1) + l.size;
|
||||
return h;
|
||||
}
|
||||
|
||||
int deconvolutional_out_width(deconvolutional_layer layer)
|
||||
int deconvolutional_out_width(deconvolutional_layer l)
|
||||
{
|
||||
int w = layer.stride*(layer.w - 1) + layer.size;
|
||||
int w = l.stride*(l.w - 1) + l.size;
|
||||
return w;
|
||||
}
|
||||
|
||||
int deconvolutional_out_size(deconvolutional_layer layer)
|
||||
int deconvolutional_out_size(deconvolutional_layer l)
|
||||
{
|
||||
return deconvolutional_out_height(layer) * deconvolutional_out_width(layer);
|
||||
return deconvolutional_out_height(l) * deconvolutional_out_width(l);
|
||||
}
|
||||
|
||||
image get_deconvolutional_image(deconvolutional_layer layer)
|
||||
image get_deconvolutional_image(deconvolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = deconvolutional_out_height(layer);
|
||||
w = deconvolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
h = deconvolutional_out_height(l);
|
||||
w = deconvolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.output);
|
||||
}
|
||||
|
||||
image get_deconvolutional_delta(deconvolutional_layer layer)
|
||||
image get_deconvolutional_delta(deconvolutional_layer l)
|
||||
{
|
||||
int h,w,c;
|
||||
h = deconvolutional_out_height(layer);
|
||||
w = deconvolutional_out_width(layer);
|
||||
c = layer.n;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
h = deconvolutional_out_height(l);
|
||||
w = deconvolutional_out_width(l);
|
||||
c = l.n;
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
deconvolutional_layer *layer = calloc(1, sizeof(deconvolutional_layer));
|
||||
deconvolutional_layer l = {0};
|
||||
l.type = DECONVOLUTIONAL;
|
||||
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->n = n;
|
||||
layer->batch = batch;
|
||||
layer->stride = stride;
|
||||
layer->size = size;
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
|
||||
layer->filters = calloc(c*n*size*size, sizeof(float));
|
||||
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
l.filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.filter_updates = calloc(c*n*size*size, sizeof(float));
|
||||
|
||||
layer->biases = calloc(n, sizeof(float));
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
l.bias_updates = calloc(n, sizeof(float));
|
||||
float scale = 1./sqrt(size*size*c);
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = scale*rand_normal();
|
||||
for(i = 0; i < n; ++i){
|
||||
layer->biases[i] = scale;
|
||||
l.biases[i] = scale;
|
||||
}
|
||||
int out_h = deconvolutional_out_height(*layer);
|
||||
int out_w = deconvolutional_out_width(*layer);
|
||||
int out_h = deconvolutional_out_height(l);
|
||||
int out_w = deconvolutional_out_width(l);
|
||||
|
||||
layer->col_image = calloc(h*w*size*size*n, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
l.out_h = out_h;
|
||||
l.out_w = out_w;
|
||||
l.out_c = n;
|
||||
l.outputs = l.out_w * l.out_h * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
l.col_image = calloc(h*w*size*size*n, sizeof(float));
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
||||
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size);
|
||||
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
||||
l.biases_gpu = cuda_make_array(l.biases, n);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, h*w*size*size*n);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
l.col_image_gpu = cuda_make_array(l.col_image, h*w*size*size*n);
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
#endif
|
||||
|
||||
layer->activation = activation;
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Deconvolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w)
|
||||
void resize_deconvolutional_layer(deconvolutional_layer *l, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
int out_h = deconvolutional_out_height(*layer);
|
||||
int out_w = deconvolutional_out_width(*layer);
|
||||
l->h = h;
|
||||
l->w = w;
|
||||
int out_h = deconvolutional_out_height(*l);
|
||||
int out_w = deconvolutional_out_width(*l);
|
||||
|
||||
layer->col_image = realloc(layer->col_image,
|
||||
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
layer->output = realloc(layer->output,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
layer->delta = realloc(layer->delta,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
l->col_image = realloc(l->col_image,
|
||||
out_h*out_w*l->size*l->size*l->c*sizeof(float));
|
||||
l->output = realloc(l->output,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
l->delta = realloc(l->delta,
|
||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
||||
#ifdef GPU
|
||||
cuda_free(layer->col_image_gpu);
|
||||
cuda_free(layer->delta_gpu);
|
||||
cuda_free(layer->output_gpu);
|
||||
cuda_free(l->col_image_gpu);
|
||||
cuda_free(l->delta_gpu);
|
||||
cuda_free(l->output_gpu);
|
||||
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
|
||||
l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c);
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#endif
|
||||
}
|
||||
|
||||
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state)
|
||||
void forward_deconvolutional_layer(const deconvolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int out_h = deconvolutional_out_height(layer);
|
||||
int out_w = deconvolutional_out_width(layer);
|
||||
int out_h = deconvolutional_out_height(l);
|
||||
int out_w = deconvolutional_out_width(l);
|
||||
int size = out_h*out_w;
|
||||
|
||||
int m = layer.size*layer.size*layer.n;
|
||||
int n = layer.h*layer.w;
|
||||
int k = layer.c;
|
||||
int m = l.size*l.size*l.n;
|
||||
int n = l.h*l.w;
|
||||
int k = l.c;
|
||||
|
||||
bias_output(layer.output, layer.biases, layer.batch, layer.n, size);
|
||||
bias_output(l.output, l.biases, l.batch, l.n, size);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float *a = layer.filters;
|
||||
float *b = state.input + i*layer.c*layer.h*layer.w;
|
||||
float *c = layer.col_image;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *a = l.filters;
|
||||
float *b = state.input + i*l.c*l.h*l.w;
|
||||
float *c = l.col_image;
|
||||
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
|
||||
col2im_cpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output+i*layer.n*size);
|
||||
col2im_cpu(c, l.n, out_h, out_w, l.size, l.stride, 0, l.output+i*l.n*size);
|
||||
}
|
||||
activate_array(layer.output, layer.batch*layer.n*size, layer.activation);
|
||||
activate_array(l.output, l.batch*l.n*size, l.activation);
|
||||
}
|
||||
|
||||
void backward_deconvolutional_layer(deconvolutional_layer layer, network_state state)
|
||||
void backward_deconvolutional_layer(deconvolutional_layer l, network_state state)
|
||||
{
|
||||
float alpha = 1./layer.batch;
|
||||
int out_h = deconvolutional_out_height(layer);
|
||||
int out_w = deconvolutional_out_width(layer);
|
||||
float alpha = 1./l.batch;
|
||||
int out_h = deconvolutional_out_height(l);
|
||||
int out_w = deconvolutional_out_width(l);
|
||||
int size = out_h*out_w;
|
||||
int i;
|
||||
|
||||
gradient_array(layer.output, size*layer.n*layer.batch, layer.activation, layer.delta);
|
||||
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, size);
|
||||
gradient_array(l.output, size*l.n*l.batch, l.activation, l.delta);
|
||||
backward_bias(l.bias_updates, l.delta, l.batch, l.n, size);
|
||||
|
||||
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
int m = layer.c;
|
||||
int n = layer.size*layer.size*layer.n;
|
||||
int k = layer.h*layer.w;
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
int m = l.c;
|
||||
int n = l.size*l.size*l.n;
|
||||
int k = l.h*l.w;
|
||||
|
||||
float *a = state.input + i*m*n;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
float *b = l.col_image;
|
||||
float *c = l.filter_updates;
|
||||
|
||||
im2col_cpu(layer.delta + i*layer.n*size, layer.n, out_h, out_w,
|
||||
layer.size, layer.stride, 0, b);
|
||||
im2col_cpu(l.delta + i*l.n*size, l.n, out_h, out_w,
|
||||
l.size, l.stride, 0, b);
|
||||
gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
int m = layer.c;
|
||||
int n = layer.h*layer.w;
|
||||
int k = layer.size*layer.size*layer.n;
|
||||
int m = l.c;
|
||||
int n = l.h*l.w;
|
||||
int k = l.size*l.size*l.n;
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *a = l.filters;
|
||||
float *b = l.col_image;
|
||||
float *c = state.delta + i*n*m;
|
||||
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
@ -181,15 +188,15 @@ void backward_deconvolutional_layer(deconvolutional_layer layer, network_state s
|
||||
}
|
||||
}
|
||||
|
||||
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay)
|
||||
void update_deconvolutional_layer(deconvolutional_layer l, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1);
|
||||
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
axpy_cpu(l.n, learning_rate, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1);
|
||||
scal_cpu(size, momentum, layer.filter_updates, 1);
|
||||
axpy_cpu(size, -decay, l.filters, 1, l.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate, l.filter_updates, 1, l.filters, 1);
|
||||
scal_cpu(size, momentum, l.filter_updates, 1);
|
||||
}
|
||||
|
||||
|
||||
|
@ -5,37 +5,9 @@
|
||||
#include "params.h"
|
||||
#include "image.h"
|
||||
#include "activations.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int n;
|
||||
int size;
|
||||
int stride;
|
||||
float *filters;
|
||||
float *filter_updates;
|
||||
|
||||
float *biases;
|
||||
float *bias_updates;
|
||||
|
||||
float *col_image;
|
||||
float *delta;
|
||||
float *output;
|
||||
|
||||
#ifdef GPU
|
||||
float * filters_gpu;
|
||||
float * filter_updates_gpu;
|
||||
|
||||
float * biases_gpu;
|
||||
float * bias_updates_gpu;
|
||||
|
||||
float * col_image_gpu;
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
|
||||
ACTIVATION activation;
|
||||
} deconvolutional_layer;
|
||||
typedef layer deconvolutional_layer;
|
||||
|
||||
#ifdef GPU
|
||||
void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state);
|
||||
@ -45,7 +17,7 @@ void push_deconvolutional_layer(deconvolutional_layer layer);
|
||||
void pull_deconvolutional_layer(deconvolutional_layer layer);
|
||||
#endif
|
||||
|
||||
deconvolutional_layer *make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
|
||||
deconvolutional_layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
|
||||
void resize_deconvolutional_layer(deconvolutional_layer *layer, int h, int w);
|
||||
void forward_deconvolutional_layer(const deconvolutional_layer layer, network_state state);
|
||||
void update_deconvolutional_layer(deconvolutional_layer layer, float learning_rate, float momentum, float decay);
|
||||
|
@ -115,6 +115,7 @@ void train_localization(char *cfgfile, char *weightfile)
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
|
||||
//TODO
|
||||
float *out = get_network_output_gpu(net);
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[127]);
|
||||
image copy = copy_image(im);
|
||||
@ -149,7 +150,7 @@ void train_detection_teststuff(char *cfgfile, char *weightfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer *layer = get_network_detection_layer(net);
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
net.learning_rate = 0;
|
||||
net.decay = 0;
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
@ -157,9 +158,9 @@ void train_detection_teststuff(char *cfgfile, char *weightfile)
|
||||
int i = net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
int classes = layer->classes;
|
||||
int background = layer->background;
|
||||
int side = sqrt(get_detection_layer_locations(*layer));
|
||||
int classes = layer.classes;
|
||||
int background = layer.background;
|
||||
int side = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
char **paths;
|
||||
list *plist;
|
||||
@ -174,7 +175,7 @@ void train_detection_teststuff(char *cfgfile, char *weightfile)
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
clock_t time;
|
||||
cost_layer clayer = *((cost_layer *)net.layers[net.n-1]);
|
||||
cost_layer clayer = net.layers[net.n-1];
|
||||
while(1){
|
||||
i += 1;
|
||||
time=clock();
|
||||
@ -235,15 +236,15 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer *layer = get_network_detection_layer(net);
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 128;
|
||||
int i = net.seen/imgs;
|
||||
data train, buffer;
|
||||
|
||||
int classes = layer->classes;
|
||||
int background = layer->background;
|
||||
int side = sqrt(get_detection_layer_locations(*layer));
|
||||
int classes = layer.classes;
|
||||
int background = layer.background;
|
||||
int side = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
char **paths;
|
||||
list *plist;
|
||||
@ -325,7 +326,7 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
if(weightfile){
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer *layer = get_network_detection_layer(net);
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
@ -336,10 +337,10 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
//list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
int classes = layer->classes;
|
||||
int nuisance = layer->nuisance;
|
||||
int background = (layer->background && !nuisance);
|
||||
int num_boxes = sqrt(get_detection_layer_locations(*layer));
|
||||
int classes = layer.classes;
|
||||
int nuisance = layer.nuisance;
|
||||
int background = (layer.background && !nuisance);
|
||||
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
int per_box = 4+classes+background+nuisance;
|
||||
int num_output = num_boxes*num_boxes*per_box;
|
||||
@ -393,7 +394,7 @@ void validate_detection_post(char *cfgfile, char *weightfile)
|
||||
load_weights(&post, "/home/pjreddie/imagenet_backup/localize_1000.weights");
|
||||
set_batch_network(&post, 1);
|
||||
|
||||
detection_layer *layer = get_network_detection_layer(net);
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
srand(time(0));
|
||||
|
||||
@ -404,10 +405,10 @@ void validate_detection_post(char *cfgfile, char *weightfile)
|
||||
//list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
|
||||
int classes = layer->classes;
|
||||
int nuisance = layer->nuisance;
|
||||
int background = (layer->background && !nuisance);
|
||||
int num_boxes = sqrt(get_detection_layer_locations(*layer));
|
||||
int classes = layer.classes;
|
||||
int nuisance = layer.nuisance;
|
||||
int background = (layer.background && !nuisance);
|
||||
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
int per_box = 4+classes+background+nuisance;
|
||||
|
||||
|
@ -8,47 +8,49 @@
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
int get_detection_layer_locations(detection_layer layer)
|
||||
int get_detection_layer_locations(detection_layer l)
|
||||
{
|
||||
return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
|
||||
return l.inputs / (l.classes+l.coords+l.rescore+l.background);
|
||||
}
|
||||
|
||||
int get_detection_layer_output_size(detection_layer layer)
|
||||
int get_detection_layer_output_size(detection_layer l)
|
||||
{
|
||||
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
||||
return get_detection_layer_locations(l)*(l.background + l.classes + l.coords);
|
||||
}
|
||||
|
||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
|
||||
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
|
||||
{
|
||||
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
||||
detection_layer l = {0};
|
||||
l.type = DETECTION;
|
||||
|
||||
layer->batch = batch;
|
||||
layer->inputs = inputs;
|
||||
layer->classes = classes;
|
||||
layer->coords = coords;
|
||||
layer->rescore = rescore;
|
||||
layer->nuisance = nuisance;
|
||||
layer->cost = calloc(1, sizeof(float));
|
||||
layer->does_cost=1;
|
||||
layer->background = background;
|
||||
int outputs = get_detection_layer_output_size(*layer);
|
||||
layer->output = calloc(batch*outputs, sizeof(float));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float));
|
||||
l.batch = batch;
|
||||
l.inputs = inputs;
|
||||
l.classes = classes;
|
||||
l.coords = coords;
|
||||
l.rescore = rescore;
|
||||
l.nuisance = nuisance;
|
||||
l.cost = calloc(1, sizeof(float));
|
||||
l.does_cost=1;
|
||||
l.background = background;
|
||||
int outputs = get_detection_layer_output_size(l);
|
||||
l.outputs = outputs;
|
||||
l.output = calloc(batch*outputs, sizeof(float));
|
||||
l.delta = calloc(batch*outputs, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_gpu = cuda_make_array(0, batch*outputs);
|
||||
layer->delta_gpu = cuda_make_array(0, batch*outputs);
|
||||
l.output_gpu = cuda_make_array(0, batch*outputs);
|
||||
l.delta_gpu = cuda_make_array(0, batch*outputs);
|
||||
#endif
|
||||
|
||||
fprintf(stderr, "Detection Layer\n");
|
||||
srand(0);
|
||||
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void dark_zone(detection_layer layer, int class, int start, network_state state)
|
||||
void dark_zone(detection_layer l, int class, int start, network_state state)
|
||||
{
|
||||
int index = start+layer.background+class;
|
||||
int size = layer.classes+layer.coords+layer.background;
|
||||
int index = start+l.background+class;
|
||||
int size = l.classes+l.coords+l.background;
|
||||
int location = (index%(7*7*size)) / size ;
|
||||
int r = location / 7;
|
||||
int c = location % 7;
|
||||
@ -60,9 +62,9 @@ void dark_zone(detection_layer layer, int class, int start, network_state state)
|
||||
if((c + dc) > 6 || (c + dc) < 0) continue;
|
||||
int di = (dr*7 + dc) * size;
|
||||
if(state.truth[index+di]) continue;
|
||||
layer.output[index + di] = 0;
|
||||
l.output[index + di] = 0;
|
||||
//if(!state.truth[start+di]) continue;
|
||||
//layer.output[start + di] = 1;
|
||||
//l.output[start + di] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -299,47 +301,47 @@ dbox diou(box a, box b)
|
||||
return dd;
|
||||
}
|
||||
|
||||
void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
void forward_detection_layer(const detection_layer l, network_state state)
|
||||
{
|
||||
int in_i = 0;
|
||||
int out_i = 0;
|
||||
int locations = get_detection_layer_locations(layer);
|
||||
int locations = get_detection_layer_locations(l);
|
||||
int i,j;
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
int mask = (!state.truth || state.truth[out_i + l.background + l.classes + 2]);
|
||||
float scale = 1;
|
||||
if(layer.rescore) scale = state.input[in_i++];
|
||||
else if(layer.nuisance){
|
||||
layer.output[out_i++] = 1-state.input[in_i++];
|
||||
if(l.rescore) scale = state.input[in_i++];
|
||||
else if(l.nuisance){
|
||||
l.output[out_i++] = 1-state.input[in_i++];
|
||||
scale = mask;
|
||||
}
|
||||
else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
||||
else if(l.background) l.output[out_i++] = scale*state.input[in_i++];
|
||||
|
||||
for(j = 0; j < layer.classes; ++j){
|
||||
layer.output[out_i++] = scale*state.input[in_i++];
|
||||
for(j = 0; j < l.classes; ++j){
|
||||
l.output[out_i++] = scale*state.input[in_i++];
|
||||
}
|
||||
if(layer.nuisance){
|
||||
if(l.nuisance){
|
||||
|
||||
}else if(layer.background){
|
||||
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
||||
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
||||
}else if(l.background){
|
||||
softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background);
|
||||
activate_array(state.input+in_i, l.coords, LOGISTIC);
|
||||
}
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
layer.output[out_i++] = mask*state.input[in_i++];
|
||||
for(j = 0; j < l.coords; ++j){
|
||||
l.output[out_i++] = mask*state.input[in_i++];
|
||||
}
|
||||
}
|
||||
if(layer.does_cost && state.train && 0){
|
||||
if(l.does_cost && state.train && 0){
|
||||
int count = 0;
|
||||
float avg = 0;
|
||||
*(layer.cost) = 0;
|
||||
int size = get_detection_layer_output_size(layer) * layer.batch;
|
||||
memset(layer.delta, 0, size * sizeof(float));
|
||||
for (i = 0; i < layer.batch*locations; ++i) {
|
||||
int classes = layer.nuisance+layer.classes;
|
||||
int offset = i*(classes+layer.coords);
|
||||
*(l.cost) = 0;
|
||||
int size = get_detection_layer_output_size(l) * l.batch;
|
||||
memset(l.delta, 0, size * sizeof(float));
|
||||
for (i = 0; i < l.batch*locations; ++i) {
|
||||
int classes = l.nuisance+l.classes;
|
||||
int offset = i*(classes+l.coords);
|
||||
for (j = offset; j < offset+classes; ++j) {
|
||||
*(layer.cost) += pow(state.truth[j] - layer.output[j], 2);
|
||||
layer.delta[j] = state.truth[j] - layer.output[j];
|
||||
*(l.cost) += pow(state.truth[j] - l.output[j], 2);
|
||||
l.delta[j] = state.truth[j] - l.output[j];
|
||||
}
|
||||
box truth;
|
||||
truth.x = state.truth[j+0];
|
||||
@ -347,17 +349,17 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
truth.w = state.truth[j+2];
|
||||
truth.h = state.truth[j+3];
|
||||
box out;
|
||||
out.x = layer.output[j+0];
|
||||
out.y = layer.output[j+1];
|
||||
out.w = layer.output[j+2];
|
||||
out.h = layer.output[j+3];
|
||||
out.x = l.output[j+0];
|
||||
out.y = l.output[j+1];
|
||||
out.w = l.output[j+2];
|
||||
out.h = l.output[j+3];
|
||||
if(!(truth.w*truth.h)) continue;
|
||||
//printf("iou: %f\n", iou);
|
||||
dbox d = diou(out, truth);
|
||||
layer.delta[j+0] = d.dx;
|
||||
layer.delta[j+1] = d.dy;
|
||||
layer.delta[j+2] = d.dw;
|
||||
layer.delta[j+3] = d.dh;
|
||||
l.delta[j+0] = d.dx;
|
||||
l.delta[j+1] = d.dy;
|
||||
l.delta[j+2] = d.dw;
|
||||
l.delta[j+3] = d.dh;
|
||||
|
||||
int sqr = 1;
|
||||
if(sqr){
|
||||
@ -367,7 +369,7 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
out.h *= out.h;
|
||||
}
|
||||
float iou = box_iou(truth, out);
|
||||
*(layer.cost) += pow((1-iou), 2);
|
||||
*(l.cost) += pow((1-iou), 2);
|
||||
avg += iou;
|
||||
++count;
|
||||
}
|
||||
@ -375,24 +377,24 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
}
|
||||
/*
|
||||
int count = 0;
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
for(j = 0; j < layer.classes+layer.background; ++j){
|
||||
printf("%f, ", layer.output[count++]);
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
for(j = 0; j < l.classes+l.background; ++j){
|
||||
printf("%f, ", l.output[count++]);
|
||||
}
|
||||
printf("\n");
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
printf("%f, ", layer.output[count++]);
|
||||
for(j = 0; j < l.coords; ++j){
|
||||
printf("%f, ", l.output[count++]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
*/
|
||||
/*
|
||||
if(layer.background || 1){
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
int index = i*(layer.classes+layer.coords+layer.background);
|
||||
for(j= 0; j < layer.classes; ++j){
|
||||
if(state.truth[index+j+layer.background]){
|
||||
//dark_zone(layer, j, index, state);
|
||||
if(l.background || 1){
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
int index = i*(l.classes+l.coords+l.background);
|
||||
for(j= 0; j < l.classes; ++j){
|
||||
if(state.truth[index+j+l.background]){
|
||||
//dark_zone(l, j, index, state);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -400,66 +402,66 @@ void forward_detection_layer(const detection_layer layer, network_state state)
|
||||
*/
|
||||
}
|
||||
|
||||
void backward_detection_layer(const detection_layer layer, network_state state)
|
||||
void backward_detection_layer(const detection_layer l, network_state state)
|
||||
{
|
||||
int locations = get_detection_layer_locations(layer);
|
||||
int locations = get_detection_layer_locations(l);
|
||||
int i,j;
|
||||
int in_i = 0;
|
||||
int out_i = 0;
|
||||
for(i = 0; i < layer.batch*locations; ++i){
|
||||
for(i = 0; i < l.batch*locations; ++i){
|
||||
float scale = 1;
|
||||
float latent_delta = 0;
|
||||
if(layer.rescore) scale = state.input[in_i++];
|
||||
else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
|
||||
else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||
for(j = 0; j < layer.classes; ++j){
|
||||
latent_delta += state.input[in_i]*layer.delta[out_i];
|
||||
state.delta[in_i++] = scale*layer.delta[out_i++];
|
||||
if(l.rescore) scale = state.input[in_i++];
|
||||
else if (l.nuisance) state.delta[in_i++] = -l.delta[out_i++];
|
||||
else if (l.background) state.delta[in_i++] = scale*l.delta[out_i++];
|
||||
for(j = 0; j < l.classes; ++j){
|
||||
latent_delta += state.input[in_i]*l.delta[out_i];
|
||||
state.delta[in_i++] = scale*l.delta[out_i++];
|
||||
}
|
||||
|
||||
if (layer.nuisance) {
|
||||
if (l.nuisance) {
|
||||
|
||||
}else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
||||
for(j = 0; j < layer.coords; ++j){
|
||||
state.delta[in_i++] = layer.delta[out_i++];
|
||||
}else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i);
|
||||
for(j = 0; j < l.coords; ++j){
|
||||
state.delta[in_i++] = l.delta[out_i++];
|
||||
}
|
||||
if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
|
||||
if(l.rescore) state.delta[in_i-l.coords-l.classes-l.rescore-l.background] = latent_delta;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void forward_detection_layer_gpu(const detection_layer layer, network_state state)
|
||||
void forward_detection_layer_gpu(const detection_layer l, network_state state)
|
||||
{
|
||||
int outputs = get_detection_layer_output_size(layer);
|
||||
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
||||
int outputs = get_detection_layer_output_size(l);
|
||||
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
||||
float *truth_cpu = 0;
|
||||
if(state.truth){
|
||||
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
||||
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
||||
truth_cpu = calloc(l.batch*outputs, sizeof(float));
|
||||
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
|
||||
}
|
||||
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
||||
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
||||
network_state cpu_state;
|
||||
cpu_state.train = state.train;
|
||||
cpu_state.truth = truth_cpu;
|
||||
cpu_state.input = in_cpu;
|
||||
forward_detection_layer(layer, cpu_state);
|
||||
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
|
||||
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
||||
forward_detection_layer(l, cpu_state);
|
||||
cuda_push_array(l.output_gpu, l.output, l.batch*outputs);
|
||||
cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs);
|
||||
free(cpu_state.input);
|
||||
if(cpu_state.truth) free(cpu_state.truth);
|
||||
}
|
||||
|
||||
void backward_detection_layer_gpu(detection_layer layer, network_state state)
|
||||
void backward_detection_layer_gpu(detection_layer l, network_state state)
|
||||
{
|
||||
int outputs = get_detection_layer_output_size(layer);
|
||||
int outputs = get_detection_layer_output_size(l);
|
||||
|
||||
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
||||
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
||||
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
||||
float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
||||
float *truth_cpu = 0;
|
||||
if(state.truth){
|
||||
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
||||
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
||||
truth_cpu = calloc(l.batch*outputs, sizeof(float));
|
||||
cuda_pull_array(state.truth, truth_cpu, l.batch*outputs);
|
||||
}
|
||||
network_state cpu_state;
|
||||
cpu_state.train = state.train;
|
||||
@ -467,10 +469,10 @@ void backward_detection_layer_gpu(detection_layer layer, network_state state)
|
||||
cpu_state.truth = truth_cpu;
|
||||
cpu_state.delta = delta_cpu;
|
||||
|
||||
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
||||
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
||||
backward_detection_layer(layer, cpu_state);
|
||||
cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
|
||||
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
||||
cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs);
|
||||
backward_detection_layer(l, cpu_state);
|
||||
cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs);
|
||||
|
||||
free(in_cpu);
|
||||
free(delta_cpu);
|
||||
|
@ -2,34 +2,19 @@
|
||||
#define DETECTION_LAYER_H
|
||||
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int inputs;
|
||||
int classes;
|
||||
int coords;
|
||||
int background;
|
||||
int rescore;
|
||||
int nuisance;
|
||||
int does_cost;
|
||||
float *cost;
|
||||
float *output;
|
||||
float *delta;
|
||||
#ifdef GPU
|
||||
float * output_gpu;
|
||||
float * delta_gpu;
|
||||
#endif
|
||||
} detection_layer;
|
||||
typedef layer detection_layer;
|
||||
|
||||
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance);
|
||||
void forward_detection_layer(const detection_layer layer, network_state state);
|
||||
void backward_detection_layer(const detection_layer layer, network_state state);
|
||||
int get_detection_layer_output_size(detection_layer layer);
|
||||
int get_detection_layer_locations(detection_layer layer);
|
||||
detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance);
|
||||
void forward_detection_layer(const detection_layer l, network_state state);
|
||||
void backward_detection_layer(const detection_layer l, network_state state);
|
||||
int get_detection_layer_output_size(detection_layer l);
|
||||
int get_detection_layer_locations(detection_layer l);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_detection_layer_gpu(const detection_layer layer, network_state state);
|
||||
void backward_detection_layer_gpu(detection_layer layer, network_state state);
|
||||
void forward_detection_layer_gpu(const detection_layer l, network_state state);
|
||||
void backward_detection_layer_gpu(detection_layer l, network_state state);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -5,51 +5,53 @@
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
dropout_layer *make_dropout_layer(int batch, int inputs, float probability)
|
||||
dropout_layer make_dropout_layer(int batch, int inputs, float probability)
|
||||
{
|
||||
fprintf(stderr, "Dropout Layer: %d inputs, %f probability\n", inputs, probability);
|
||||
dropout_layer *layer = calloc(1, sizeof(dropout_layer));
|
||||
layer->probability = probability;
|
||||
layer->inputs = inputs;
|
||||
layer->batch = batch;
|
||||
layer->rand = calloc(inputs*batch, sizeof(float));
|
||||
layer->scale = 1./(1.-probability);
|
||||
dropout_layer l = {0};
|
||||
l.type = DROPOUT;
|
||||
l.probability = probability;
|
||||
l.inputs = inputs;
|
||||
l.outputs = inputs;
|
||||
l.batch = batch;
|
||||
l.rand = calloc(inputs*batch, sizeof(float));
|
||||
l.scale = 1./(1.-probability);
|
||||
#ifdef GPU
|
||||
layer->rand_gpu = cuda_make_array(layer->rand, inputs*batch);
|
||||
l.rand_gpu = cuda_make_array(l.rand, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void resize_dropout_layer(dropout_layer *layer, int inputs)
|
||||
void resize_dropout_layer(dropout_layer *l, int inputs)
|
||||
{
|
||||
layer->rand = realloc(layer->rand, layer->inputs*layer->batch*sizeof(float));
|
||||
l->rand = realloc(l->rand, l->inputs*l->batch*sizeof(float));
|
||||
#ifdef GPU
|
||||
cuda_free(layer->rand_gpu);
|
||||
cuda_free(l->rand_gpu);
|
||||
|
||||
layer->rand_gpu = cuda_make_array(layer->rand, inputs*layer->batch);
|
||||
l->rand_gpu = cuda_make_array(l->rand, inputs*l->batch);
|
||||
#endif
|
||||
}
|
||||
|
||||
void forward_dropout_layer(dropout_layer layer, network_state state)
|
||||
void forward_dropout_layer(dropout_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
if (!state.train) return;
|
||||
for(i = 0; i < layer.batch * layer.inputs; ++i){
|
||||
for(i = 0; i < l.batch * l.inputs; ++i){
|
||||
float r = rand_uniform();
|
||||
layer.rand[i] = r;
|
||||
if(r < layer.probability) state.input[i] = 0;
|
||||
else state.input[i] *= layer.scale;
|
||||
l.rand[i] = r;
|
||||
if(r < l.probability) state.input[i] = 0;
|
||||
else state.input[i] *= l.scale;
|
||||
}
|
||||
}
|
||||
|
||||
void backward_dropout_layer(dropout_layer layer, network_state state)
|
||||
void backward_dropout_layer(dropout_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
if(!state.delta) return;
|
||||
for(i = 0; i < layer.batch * layer.inputs; ++i){
|
||||
float r = layer.rand[i];
|
||||
if(r < layer.probability) state.delta[i] = 0;
|
||||
else state.delta[i] *= layer.scale;
|
||||
for(i = 0; i < l.batch * l.inputs; ++i){
|
||||
float r = l.rand[i];
|
||||
if(r < l.probability) state.delta[i] = 0;
|
||||
else state.delta[i] *= l.scale;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,27 +1,20 @@
|
||||
#ifndef DROPOUT_LAYER_H
|
||||
#define DROPOUT_LAYER_H
|
||||
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
int inputs;
|
||||
float probability;
|
||||
float scale;
|
||||
float *rand;
|
||||
#ifdef GPU
|
||||
float * rand_gpu;
|
||||
#endif
|
||||
} dropout_layer;
|
||||
typedef layer dropout_layer;
|
||||
|
||||
dropout_layer *make_dropout_layer(int batch, int inputs, float probability);
|
||||
dropout_layer make_dropout_layer(int batch, int inputs, float probability);
|
||||
|
||||
void forward_dropout_layer(dropout_layer layer, network_state state);
|
||||
void backward_dropout_layer(dropout_layer layer, network_state state);
|
||||
void resize_dropout_layer(dropout_layer *layer, int inputs);
|
||||
void forward_dropout_layer(dropout_layer l, network_state state);
|
||||
void backward_dropout_layer(dropout_layer l, network_state state);
|
||||
void resize_dropout_layer(dropout_layer *l, int inputs);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_dropout_layer_gpu(dropout_layer layer, network_state state);
|
||||
void backward_dropout_layer_gpu(dropout_layer layer, network_state state);
|
||||
void forward_dropout_layer_gpu(dropout_layer l, network_state state);
|
||||
void backward_dropout_layer_gpu(dropout_layer l, network_state state);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -2,109 +2,115 @@
|
||||
#include "cuda.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_maxpool_image(maxpool_layer layer)
|
||||
image get_maxpool_image(maxpool_layer l)
|
||||
{
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
int h = (l.h-1)/l.stride + 1;
|
||||
int w = (l.w-1)/l.stride + 1;
|
||||
int c = l.c;
|
||||
return float_to_image(w,h,c,l.output);
|
||||
}
|
||||
|
||||
image get_maxpool_delta(maxpool_layer layer)
|
||||
image get_maxpool_delta(maxpool_layer l)
|
||||
{
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
int h = (l.h-1)/l.stride + 1;
|
||||
int w = (l.w-1)/l.stride + 1;
|
||||
int c = l.c;
|
||||
return float_to_image(w,h,c,l.delta);
|
||||
}
|
||||
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride)
|
||||
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride)
|
||||
{
|
||||
fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d size, %d stride\n", h,w,c,size,stride);
|
||||
maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->size = size;
|
||||
layer->stride = stride;
|
||||
maxpool_layer l = {0};
|
||||
l.type = MAXPOOL;
|
||||
l.batch = batch;
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.out_h = h;
|
||||
l.out_w = w;
|
||||
l.out_c = c;
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.outputs;
|
||||
l.size = size;
|
||||
l.stride = stride;
|
||||
int output_size = ((h-1)/stride+1) * ((w-1)/stride+1) * c * batch;
|
||||
layer->indexes = calloc(output_size, sizeof(int));
|
||||
layer->output = calloc(output_size, sizeof(float));
|
||||
layer->delta = calloc(output_size, sizeof(float));
|
||||
l.indexes = calloc(output_size, sizeof(int));
|
||||
l.output = calloc(output_size, sizeof(float));
|
||||
l.delta = calloc(output_size, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->indexes_gpu = cuda_make_int_array(output_size);
|
||||
layer->output_gpu = cuda_make_array(layer->output, output_size);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, output_size);
|
||||
l.indexes_gpu = cuda_make_int_array(output_size);
|
||||
l.output_gpu = cuda_make_array(l.output, output_size);
|
||||
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void resize_maxpool_layer(maxpool_layer *layer, int h, int w)
|
||||
void resize_maxpool_layer(maxpool_layer *l, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
int output_size = ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * layer->c * layer->batch;
|
||||
layer->output = realloc(layer->output, output_size * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, output_size * sizeof(float));
|
||||
l->h = h;
|
||||
l->w = w;
|
||||
int output_size = ((h-1)/l->stride+1) * ((w-1)/l->stride+1) * l->c * l->batch;
|
||||
l->output = realloc(l->output, output_size * sizeof(float));
|
||||
l->delta = realloc(l->delta, output_size * sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
cuda_free((float *)layer->indexes_gpu);
|
||||
cuda_free(layer->output_gpu);
|
||||
cuda_free(layer->delta_gpu);
|
||||
layer->indexes_gpu = cuda_make_int_array(output_size);
|
||||
layer->output_gpu = cuda_make_array(layer->output, output_size);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, output_size);
|
||||
cuda_free((float *)l->indexes_gpu);
|
||||
cuda_free(l->output_gpu);
|
||||
cuda_free(l->delta_gpu);
|
||||
l->indexes_gpu = cuda_make_int_array(output_size);
|
||||
l->output_gpu = cuda_make_array(l->output, output_size);
|
||||
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
||||
#endif
|
||||
}
|
||||
|
||||
void forward_maxpool_layer(const maxpool_layer layer, network_state state)
|
||||
void forward_maxpool_layer(const maxpool_layer l, network_state state)
|
||||
{
|
||||
int b,i,j,k,l,m;
|
||||
int w_offset = (-layer.size-1)/2 + 1;
|
||||
int h_offset = (-layer.size-1)/2 + 1;
|
||||
int b,i,j,k,m,n;
|
||||
int w_offset = (-l.size-1)/2 + 1;
|
||||
int h_offset = (-l.size-1)/2 + 1;
|
||||
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
int h = (l.h-1)/l.stride + 1;
|
||||
int w = (l.w-1)/l.stride + 1;
|
||||
int c = l.c;
|
||||
|
||||
for(b = 0; b < layer.batch; ++b){
|
||||
for(b = 0; b < l.batch; ++b){
|
||||
for(k = 0; k < c; ++k){
|
||||
for(i = 0; i < h; ++i){
|
||||
for(j = 0; j < w; ++j){
|
||||
int out_index = j + w*(i + h*(k + c*b));
|
||||
float max = -FLT_MAX;
|
||||
int max_i = -1;
|
||||
for(l = 0; l < layer.size; ++l){
|
||||
for(m = 0; m < layer.size; ++m){
|
||||
int cur_h = h_offset + i*layer.stride + l;
|
||||
int cur_w = w_offset + j*layer.stride + m;
|
||||
int index = cur_w + layer.w*(cur_h + layer.h*(k + b*layer.c));
|
||||
int valid = (cur_h >= 0 && cur_h < layer.h &&
|
||||
cur_w >= 0 && cur_w < layer.w);
|
||||
for(n = 0; n < l.size; ++n){
|
||||
for(m = 0; m < l.size; ++m){
|
||||
int cur_h = h_offset + i*l.stride + n;
|
||||
int cur_w = w_offset + j*l.stride + m;
|
||||
int index = cur_w + l.w*(cur_h + l.h*(k + b*l.c));
|
||||
int valid = (cur_h >= 0 && cur_h < l.h &&
|
||||
cur_w >= 0 && cur_w < l.w);
|
||||
float val = (valid != 0) ? state.input[index] : -FLT_MAX;
|
||||
max_i = (val > max) ? index : max_i;
|
||||
max = (val > max) ? val : max;
|
||||
}
|
||||
}
|
||||
layer.output[out_index] = max;
|
||||
layer.indexes[out_index] = max_i;
|
||||
l.output[out_index] = max;
|
||||
l.indexes[out_index] = max_i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_maxpool_layer(const maxpool_layer layer, network_state state)
|
||||
void backward_maxpool_layer(const maxpool_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
int h = (layer.h-1)/layer.stride + 1;
|
||||
int w = (layer.w-1)/layer.stride + 1;
|
||||
int c = layer.c;
|
||||
memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
for(i = 0; i < h*w*c*layer.batch; ++i){
|
||||
int index = layer.indexes[i];
|
||||
state.delta[index] += layer.delta[i];
|
||||
int h = (l.h-1)/l.stride + 1;
|
||||
int w = (l.w-1)/l.stride + 1;
|
||||
int c = l.c;
|
||||
memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float));
|
||||
for(i = 0; i < h*w*c*l.batch; ++i){
|
||||
int index = l.indexes[i];
|
||||
state.delta[index] += l.delta[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4,31 +4,19 @@
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
#include "cuda.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int stride;
|
||||
int size;
|
||||
int *indexes;
|
||||
float *delta;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
int *indexes_gpu;
|
||||
float *output_gpu;
|
||||
float *delta_gpu;
|
||||
#endif
|
||||
} maxpool_layer;
|
||||
typedef layer maxpool_layer;
|
||||
|
||||
image get_maxpool_image(maxpool_layer layer);
|
||||
maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
|
||||
void resize_maxpool_layer(maxpool_layer *layer, int h, int w);
|
||||
void forward_maxpool_layer(const maxpool_layer layer, network_state state);
|
||||
void backward_maxpool_layer(const maxpool_layer layer, network_state state);
|
||||
image get_maxpool_image(maxpool_layer l);
|
||||
maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int stride);
|
||||
void resize_maxpool_layer(maxpool_layer *l, int h, int w);
|
||||
void forward_maxpool_layer(const maxpool_layer l, network_state state);
|
||||
void backward_maxpool_layer(const maxpool_layer l, network_state state);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
|
||||
void backward_maxpool_layer_gpu(maxpool_layer layer, network_state state);
|
||||
void forward_maxpool_layer_gpu(maxpool_layer l, network_state state);
|
||||
void backward_maxpool_layer_gpu(maxpool_layer l, network_state state);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
444
src/network.c
444
src/network.c
@ -12,7 +12,6 @@
|
||||
#include "detection_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "route_layer.h"
|
||||
@ -32,8 +31,6 @@ char *get_layer_string(LAYER_TYPE a)
|
||||
return "softmax";
|
||||
case DETECTION:
|
||||
return "detection";
|
||||
case NORMALIZATION:
|
||||
return "normalization";
|
||||
case DROPOUT:
|
||||
return "dropout";
|
||||
case CROP:
|
||||
@ -50,16 +47,9 @@ char *get_layer_string(LAYER_TYPE a)
|
||||
|
||||
network make_network(int n)
|
||||
{
|
||||
network net;
|
||||
network net = {0};
|
||||
net.n = n;
|
||||
net.layers = calloc(net.n, sizeof(void *));
|
||||
net.types = calloc(net.n, sizeof(LAYER_TYPE));
|
||||
net.outputs = 0;
|
||||
net.output = 0;
|
||||
net.seen = 0;
|
||||
net.batch = 0;
|
||||
net.inputs = 0;
|
||||
net.h = net.w = net.c = 0;
|
||||
net.layers = calloc(net.n, sizeof(layer));
|
||||
#ifdef GPU
|
||||
net.input_gpu = calloc(1, sizeof(float *));
|
||||
net.truth_gpu = calloc(1, sizeof(float *));
|
||||
@ -71,40 +61,29 @@ void forward_network(network net, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
forward_convolutional_layer(l, state);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
forward_deconvolutional_layer(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
forward_detection_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer(l, state);
|
||||
} else if(l.type == CROP){
|
||||
forward_crop_layer(l, state);
|
||||
} else if(l.type == COST){
|
||||
forward_cost_layer(l, state);
|
||||
} else if(l.type == SOFTMAX){
|
||||
forward_softmax_layer(l, state);
|
||||
} else if(l.type == MAXPOOL){
|
||||
forward_maxpool_layer(l, state);
|
||||
} else if(l.type == DROPOUT){
|
||||
forward_dropout_layer(l, state);
|
||||
} else if(l.type == ROUTE){
|
||||
forward_route_layer(l, net);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
forward_detection_layer(*(detection_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
forward_connected_layer(*(connected_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
forward_crop_layer(*(crop_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
forward_cost_layer(*(cost_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
forward_softmax_layer(*(softmax_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
forward_normalization_layer(*(normalization_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
forward_route_layer(*(route_layer *)net.layers[i], net);
|
||||
}
|
||||
state.input = get_network_output_layer(net, i);
|
||||
state.input = l.output;
|
||||
}
|
||||
}
|
||||
|
||||
@ -113,99 +92,35 @@ void update_network(network net)
|
||||
int i;
|
||||
int update_batch = net.batch*net.subdivisions;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
|
||||
} else if(l.type == CONNECTED){
|
||||
update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float *get_network_output_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
return ((convolutional_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == DECONVOLUTIONAL){
|
||||
return ((deconvolutional_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == MAXPOOL){
|
||||
return ((maxpool_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == DETECTION){
|
||||
return ((detection_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == SOFTMAX){
|
||||
return ((softmax_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
return get_network_output_layer(net, i-1);
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
return ((connected_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == CROP){
|
||||
return ((crop_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == NORMALIZATION){
|
||||
return ((normalization_layer *)net.layers[i]) -> output;
|
||||
} else if(net.types[i] == ROUTE){
|
||||
return ((route_layer *)net.layers[i]) -> output;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float *get_network_output(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
return get_network_output_layer(net, i);
|
||||
}
|
||||
|
||||
float *get_network_delta_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
if(i == 0) return 0;
|
||||
return get_network_delta_layer(net, i-1);
|
||||
} else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta;
|
||||
} else if(net.types[i] == ROUTE){
|
||||
return ((route_layer *)net.layers[i]) -> delta;
|
||||
}
|
||||
return 0;
|
||||
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
||||
return net.layers[i].output;
|
||||
}
|
||||
|
||||
float get_network_cost(network net)
|
||||
{
|
||||
if(net.types[net.n-1] == COST){
|
||||
return ((cost_layer *)net.layers[net.n-1])->output[0];
|
||||
if(net.layers[net.n-1].type == COST){
|
||||
return net.layers[net.n-1].output[0];
|
||||
}
|
||||
if(net.types[net.n-1] == DETECTION){
|
||||
return ((detection_layer *)net.layers[net.n-1])->cost[0];
|
||||
if(net.layers[net.n-1].type == DETECTION){
|
||||
return net.layers[net.n-1].cost[0];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float *get_network_delta(network net)
|
||||
{
|
||||
return get_network_delta_layer(net, net.n-1);
|
||||
}
|
||||
|
||||
int get_predicted_class_network(network net)
|
||||
{
|
||||
float *out = get_network_output(net);
|
||||
@ -222,46 +137,29 @@ void backward_network(network net, network_state state)
|
||||
state.input = original_input;
|
||||
state.delta = 0;
|
||||
}else{
|
||||
state.input = get_network_output_layer(net, i-1);
|
||||
state.delta = get_network_delta_layer(net, i-1);
|
||||
layer prev = net.layers[i-1];
|
||||
state.input = prev.output;
|
||||
state.delta = prev.delta;
|
||||
}
|
||||
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
backward_convolutional_layer(layer, state);
|
||||
} else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
backward_deconvolutional_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
if(i != 0) backward_maxpool_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *)net.layers[i];
|
||||
backward_dropout_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *)net.layers[i];
|
||||
backward_detection_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
if(i != 0) backward_normalization_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
if(i != 0) backward_softmax_layer(layer, state);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer(layer, state);
|
||||
} else if(net.types[i] == COST){
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer(layer, state);
|
||||
} else if(net.types[i] == ROUTE){
|
||||
route_layer layer = *(route_layer *)net.layers[i];
|
||||
backward_route_layer(layer, net);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
backward_convolutional_layer(l, state);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
backward_deconvolutional_layer(l, state);
|
||||
} else if(l.type == MAXPOOL){
|
||||
if(i != 0) backward_maxpool_layer(l, state);
|
||||
} else if(l.type == DROPOUT){
|
||||
backward_dropout_layer(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
backward_detection_layer(l, state);
|
||||
} else if(l.type == SOFTMAX){
|
||||
if(i != 0) backward_softmax_layer(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
backward_connected_layer(l, state);
|
||||
} else if(l.type == COST){
|
||||
backward_cost_layer(l, state);
|
||||
} else if(l.type == ROUTE){
|
||||
backward_route_layer(l, net);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -347,127 +245,11 @@ void set_batch_network(network *net, int b)
|
||||
net->batch = b;
|
||||
int i;
|
||||
for(i = 0; i < net->n; ++i){
|
||||
if(net->types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer *layer = (convolutional_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}else if(net->types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == MAXPOOL){
|
||||
maxpool_layer *layer = (maxpool_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == CONNECTED){
|
||||
connected_layer *layer = (connected_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
} else if(net->types[i] == DROPOUT){
|
||||
dropout_layer *layer = (dropout_layer *) net->layers[i];
|
||||
layer->batch = b;
|
||||
} else if(net->types[i] == DETECTION){
|
||||
detection_layer *layer = (detection_layer *) net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == SOFTMAX){
|
||||
softmax_layer *layer = (softmax_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == COST){
|
||||
cost_layer *layer = (cost_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == CROP){
|
||||
crop_layer *layer = (crop_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
else if(net->types[i] == ROUTE){
|
||||
route_layer *layer = (route_layer *)net->layers[i];
|
||||
layer->batch = b;
|
||||
}
|
||||
net->layers[i].batch = b;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int get_network_input_size_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.h*layer.w*layer.c;
|
||||
}
|
||||
if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
return layer.h*layer.w*layer.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.h*layer.w*layer.c;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.inputs;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||
return layer.inputs;
|
||||
} else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *) net.layers[i];
|
||||
return layer.inputs;
|
||||
} else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *) net.layers[i];
|
||||
return layer.c*layer.h*layer.w;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
fprintf(stderr, "Can't find input size\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
int get_network_output_size_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
image output = get_convolutional_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
image output = get_deconvolutional_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *)net.layers[i];
|
||||
return get_detection_layer_output_size(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
image output = get_maxpool_image(layer);
|
||||
return output.h*output.w*output.c;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *) net.layers[i];
|
||||
return layer.c*layer.crop_height*layer.crop_width;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.outputs;
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
dropout_layer layer = *(dropout_layer *) net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.inputs;
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
route_layer layer = *(route_layer *)net.layers[i];
|
||||
return layer.outputs;
|
||||
}
|
||||
fprintf(stderr, "Can't find output size\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
int resize_network(network net, int h, int w, int c)
|
||||
{
|
||||
fprintf(stderr, "Might be broken, careful!!");
|
||||
@ -497,74 +279,47 @@ int resize_network(network net, int h, int w, int c)
|
||||
}else if(net.types[i] == DROPOUT){
|
||||
dropout_layer *layer = (dropout_layer *)net.layers[i];
|
||||
resize_dropout_layer(layer, h*w*c);
|
||||
}else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer *layer = (normalization_layer *)net.layers[i];
|
||||
resize_normalization_layer(layer, h, w);
|
||||
image output = get_normalization_image(*layer);
|
||||
h = output.h;
|
||||
w = output.w;
|
||||
c = output.c;
|
||||
}else{
|
||||
error("Cannot resize this type of layer");
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
|
||||
int get_network_output_size(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
return get_network_output_size_layer(net, i);
|
||||
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
||||
return net.layers[i].outputs;
|
||||
}
|
||||
|
||||
int get_network_input_size(network net)
|
||||
{
|
||||
return get_network_input_size_layer(net, 0);
|
||||
return net.layers[0].inputs;
|
||||
}
|
||||
|
||||
detection_layer *get_network_detection_layer(network net)
|
||||
detection_layer get_network_detection_layer(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == DETECTION){
|
||||
detection_layer *layer = (detection_layer *)net.layers[i];
|
||||
return layer;
|
||||
if(net.layers[i].type == DETECTION){
|
||||
return net.layers[i];
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
fprintf(stderr, "Detection layer not found!!\n");
|
||||
detection_layer l = {0};
|
||||
return l;
|
||||
}
|
||||
|
||||
image get_network_image_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return get_convolutional_image(layer);
|
||||
layer l = net.layers[i];
|
||||
if (l.out_w && l.out_h && l.out_c){
|
||||
return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
return get_deconvolutional_image(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return get_maxpool_image(layer);
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
return get_normalization_image(layer);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
return get_network_image_layer(net, i-1);
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
return get_crop_image(layer);
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
route_layer layer = *(route_layer *)net.layers[i];
|
||||
return get_network_image_layer(net, layer.input_layers[0]);
|
||||
}
|
||||
return make_empty_image(0,0,0);
|
||||
image def = {0};
|
||||
return def;
|
||||
}
|
||||
|
||||
image get_network_image(network net)
|
||||
@ -574,7 +329,8 @@ image get_network_image(network net)
|
||||
image m = get_network_image_layer(net, i);
|
||||
if(m.h != 0) return m;
|
||||
}
|
||||
return make_empty_image(0,0,0);
|
||||
image def = {0};
|
||||
return def;
|
||||
}
|
||||
|
||||
void visualize_network(network net)
|
||||
@ -582,16 +338,11 @@ void visualize_network(network net)
|
||||
image *prev = 0;
|
||||
int i;
|
||||
char buff[256];
|
||||
//show_image(get_network_image_layer(net, 0), "Crop");
|
||||
for(i = 0; i < net.n; ++i){
|
||||
sprintf(buff, "Layer %d", i);
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
prev = visualize_convolutional_layer(layer, buff, prev);
|
||||
}
|
||||
if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
visualize_normalization_layer(layer, buff);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
prev = visualize_convolutional_layer(l, buff, prev);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -672,36 +423,9 @@ void print_network(network net)
|
||||
{
|
||||
int i,j;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
float *output = 0;
|
||||
int n = 0;
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
output = layer.output;
|
||||
image m = get_convolutional_image(layer);
|
||||
n = m.h*m.w*m.c;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
output = layer.output;
|
||||
image m = get_maxpool_image(layer);
|
||||
n = m.h*m.w*m.c;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
crop_layer layer = *(crop_layer *)net.layers[i];
|
||||
output = layer.output;
|
||||
image m = get_crop_image(layer);
|
||||
n = m.h*m.w*m.c;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
output = layer.output;
|
||||
n = layer.outputs;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
output = layer.output;
|
||||
n = layer.inputs;
|
||||
}
|
||||
layer l = net.layers[i];
|
||||
float *output = l.output;
|
||||
int n = l.outputs;
|
||||
float mean = mean_array(output, n);
|
||||
float vari = variance_array(output, n);
|
||||
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
||||
|
@ -4,22 +4,9 @@
|
||||
|
||||
#include "image.h"
|
||||
#include "detection_layer.h"
|
||||
#include "layer.h"
|
||||
#include "data.h"
|
||||
|
||||
typedef enum {
|
||||
CONVOLUTIONAL,
|
||||
DECONVOLUTIONAL,
|
||||
CONNECTED,
|
||||
MAXPOOL,
|
||||
SOFTMAX,
|
||||
DETECTION,
|
||||
NORMALIZATION,
|
||||
DROPOUT,
|
||||
CROP,
|
||||
ROUTE,
|
||||
COST
|
||||
} LAYER_TYPE;
|
||||
|
||||
typedef struct {
|
||||
int n;
|
||||
int batch;
|
||||
@ -28,8 +15,7 @@ typedef struct {
|
||||
float learning_rate;
|
||||
float momentum;
|
||||
float decay;
|
||||
void **layers;
|
||||
LAYER_TYPE *types;
|
||||
layer *layers;
|
||||
int outputs;
|
||||
float *output;
|
||||
|
||||
@ -83,7 +69,7 @@ int resize_network(network net, int h, int w, int c);
|
||||
void set_batch_network(network *net, int b);
|
||||
int get_network_input_size(network net);
|
||||
float get_network_cost(network net);
|
||||
detection_layer *get_network_detection_layer(network net);
|
||||
detection_layer get_network_detection_layer(network net);
|
||||
|
||||
int get_network_nuisance(network net);
|
||||
int get_network_background(network net);
|
||||
|
@ -15,7 +15,6 @@ extern "C" {
|
||||
#include "deconvolutional_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "cost_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "route_layer.h"
|
||||
@ -29,37 +28,29 @@ void forward_network_gpu(network net, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
forward_convolutional_layer_gpu(l, state);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
forward_deconvolutional_layer_gpu(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
forward_detection_layer_gpu(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
forward_connected_layer_gpu(l, state);
|
||||
} else if(l.type == CROP){
|
||||
forward_crop_layer_gpu(l, state);
|
||||
} else if(l.type == COST){
|
||||
forward_cost_layer_gpu(l, state);
|
||||
} else if(l.type == SOFTMAX){
|
||||
forward_softmax_layer_gpu(l, state);
|
||||
} else if(l.type == MAXPOOL){
|
||||
forward_maxpool_layer_gpu(l, state);
|
||||
} else if(l.type == DROPOUT){
|
||||
forward_dropout_layer_gpu(l, state);
|
||||
} else if(l.type == ROUTE){
|
||||
forward_route_layer_gpu(l, net);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
forward_route_layer_gpu(*(route_layer *)net.layers[i], net);
|
||||
}
|
||||
state.input = get_network_output_gpu_layer(net, i);
|
||||
state.input = l.output_gpu;
|
||||
}
|
||||
}
|
||||
|
||||
@ -68,40 +59,33 @@ void backward_network_gpu(network net, network_state state)
|
||||
int i;
|
||||
float * original_input = state.input;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
layer l = net.layers[i];
|
||||
if(i == 0){
|
||||
state.input = original_input;
|
||||
state.delta = 0;
|
||||
}else{
|
||||
state.input = get_network_output_gpu_layer(net, i-1);
|
||||
state.delta = get_network_delta_gpu_layer(net, i-1);
|
||||
layer prev = net.layers[i-1];
|
||||
state.input = prev.output_gpu;
|
||||
state.delta = prev.delta_gpu;
|
||||
}
|
||||
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == COST){
|
||||
backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
backward_route_layer_gpu(*(route_layer *)net.layers[i], net);
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
backward_convolutional_layer_gpu(l, state);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
backward_deconvolutional_layer_gpu(l, state);
|
||||
} else if(l.type == MAXPOOL){
|
||||
if(i != 0) backward_maxpool_layer_gpu(l, state);
|
||||
} else if(l.type == DROPOUT){
|
||||
backward_dropout_layer_gpu(l, state);
|
||||
} else if(l.type == DETECTION){
|
||||
backward_detection_layer_gpu(l, state);
|
||||
} else if(l.type == SOFTMAX){
|
||||
if(i != 0) backward_softmax_layer_gpu(l, state);
|
||||
} else if(l.type == CONNECTED){
|
||||
backward_connected_layer_gpu(l, state);
|
||||
} else if(l.type == COST){
|
||||
backward_cost_layer_gpu(l, state);
|
||||
} else if(l.type == ROUTE){
|
||||
backward_route_layer_gpu(l, net);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -111,89 +95,17 @@ void update_network_gpu(network net)
|
||||
int i;
|
||||
int update_batch = net.batch*net.subdivisions;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
update_convolutional_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
update_deconvolutional_layer_gpu(l, net.learning_rate, net.momentum, net.decay);
|
||||
} else if(l.type == CONNECTED){
|
||||
update_connected_layer_gpu(l, update_batch, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float * get_network_output_gpu_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
return ((convolutional_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
return ((detection_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
return ((connected_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
return ((maxpool_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == CROP){
|
||||
return ((crop_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
return ((softmax_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
return ((route_layer *)net.layers[i]) -> output_gpu;
|
||||
}
|
||||
else if(net.types[i] == DROPOUT){
|
||||
return get_network_output_gpu_layer(net, i-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float * get_network_delta_gpu_layer(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == ROUTE){
|
||||
route_layer layer = *(route_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
return layer.delta_gpu;
|
||||
} else if(net.types[i] == DROPOUT){
|
||||
if(i == 0) return 0;
|
||||
return get_network_delta_gpu_layer(net, i-1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
network_state state;
|
||||
@ -219,33 +131,22 @@ float train_network_datum_gpu(network net, float *x, float *y)
|
||||
|
||||
float *get_network_output_layer_gpu(network net, int i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == DETECTION){
|
||||
detection_layer layer = *(detection_layer *)net.layers[i];
|
||||
int outputs = get_detection_layer_output_size(layer);
|
||||
cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
return layer.output;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
pull_softmax_layer_output(layer);
|
||||
return layer.output;
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
return l.output;
|
||||
} else if(l.type == DECONVOLUTIONAL){
|
||||
return l.output;
|
||||
} else if(l.type == CONNECTED){
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
||||
return l.output;
|
||||
} else if(l.type == DETECTION){
|
||||
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
|
||||
return l.output;
|
||||
} else if(l.type == MAXPOOL){
|
||||
return l.output;
|
||||
} else if(l.type == SOFTMAX){
|
||||
pull_softmax_layer_output(l);
|
||||
return l.output;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
@ -253,7 +154,7 @@ float *get_network_output_layer_gpu(network net, int i)
|
||||
float *get_network_output_gpu(network net)
|
||||
{
|
||||
int i;
|
||||
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
||||
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
||||
return get_network_output_layer_gpu(net, i);
|
||||
}
|
||||
|
||||
|
@ -1,96 +0,0 @@
|
||||
#include "normalization_layer.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_normalization_image(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_normalization_delta(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
|
||||
{
|
||||
fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
|
||||
normalization_layer *layer = calloc(1, sizeof(normalization_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->kappa = kappa;
|
||||
layer->size = size;
|
||||
layer->alpha = alpha;
|
||||
layer->beta = beta;
|
||||
layer->output = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->delta = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->sums = calloc(h*w, sizeof(float));
|
||||
return layer;
|
||||
}
|
||||
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
|
||||
layer->sums = realloc(layer->sums, h*w * sizeof(float));
|
||||
}
|
||||
|
||||
void add_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] += src[i]*src[i];
|
||||
}
|
||||
}
|
||||
void sub_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] -= src[i]*src[i];
|
||||
}
|
||||
}
|
||||
|
||||
void forward_normalization_layer(const normalization_layer layer, network_state state)
|
||||
{
|
||||
int i,j,k;
|
||||
memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
|
||||
int imsize = layer.h*layer.w;
|
||||
for(j = 0; j < layer.size/2; ++j){
|
||||
if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
|
||||
}
|
||||
for(k = 0; k < layer.c; ++k){
|
||||
int next = k+layer.size/2;
|
||||
int prev = k-layer.size/2-1;
|
||||
if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
|
||||
if(prev > 0) sub_square_array(state.input+prev*imsize, layer.sums, imsize);
|
||||
for(i = 0; i < imsize; ++i){
|
||||
layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_normalization_layer(const normalization_layer layer, network_state state)
|
||||
{
|
||||
// TODO!
|
||||
// OR NOT TODO!!
|
||||
}
|
||||
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window)
|
||||
{
|
||||
image delta = get_normalization_image(layer);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
show_image(dc, buff);
|
||||
save_image(dc, buff);
|
||||
free_image(dc);
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
#ifndef NORMALIZATION_LAYER_H
|
||||
#define NORMALIZATION_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int size;
|
||||
float alpha;
|
||||
float beta;
|
||||
float kappa;
|
||||
float *delta;
|
||||
float *output;
|
||||
float *sums;
|
||||
} normalization_layer;
|
||||
|
||||
image get_normalization_image(normalization_layer layer);
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w);
|
||||
void forward_normalization_layer(const normalization_layer layer, network_state state);
|
||||
void backward_normalization_layer(const normalization_layer layer, network_state state);
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window);
|
||||
|
||||
#endif
|
||||
|
251
src/old.c
251
src/old.c
@ -1,3 +1,254 @@
|
||||
void save_network(network net, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "w");
|
||||
if(!fp) file_error(filename);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL)
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DECONVOLUTIONAL)
|
||||
print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == CONNECTED)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == CROP)
|
||||
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DROPOUT)
|
||||
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DETECTION)
|
||||
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == COST)
|
||||
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"pad=%d\n"
|
||||
"activation=%s\n",
|
||||
l->n, l->size, l->stride, l->pad,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_deconvolutional_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[deconvolutional]\n");
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"activation=%s\n",
|
||||
l->n, l->size, l->stride,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[dropout]\n");
|
||||
fprintf(fp, "probability=%g\n\n", l->probability);
|
||||
}
|
||||
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_connected_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n");
|
||||
fprintf(fp, "output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[crop]\n");
|
||||
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n");
|
||||
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n");
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[detection]\n");
|
||||
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
|
||||
#ifndef NORMALIZATION_LAYER_H
|
||||
#define NORMALIZATION_LAYER_H
|
||||
|
||||
#include "image.h"
|
||||
#include "params.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int h,w,c;
|
||||
int size;
|
||||
float alpha;
|
||||
float beta;
|
||||
float kappa;
|
||||
float *delta;
|
||||
float *output;
|
||||
float *sums;
|
||||
} normalization_layer;
|
||||
|
||||
image get_normalization_image(normalization_layer layer);
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w);
|
||||
void forward_normalization_layer(const normalization_layer layer, network_state state);
|
||||
void backward_normalization_layer(const normalization_layer layer, network_state state);
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window);
|
||||
|
||||
#endif
|
||||
#include "normalization_layer.h"
|
||||
#include <stdio.h>
|
||||
|
||||
image get_normalization_image(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.output);
|
||||
}
|
||||
|
||||
image get_normalization_delta(normalization_layer layer)
|
||||
{
|
||||
int h = layer.h;
|
||||
int w = layer.w;
|
||||
int c = layer.c;
|
||||
return float_to_image(w,h,c,layer.delta);
|
||||
}
|
||||
|
||||
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
|
||||
{
|
||||
fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
|
||||
normalization_layer *layer = calloc(1, sizeof(normalization_layer));
|
||||
layer->batch = batch;
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->c = c;
|
||||
layer->kappa = kappa;
|
||||
layer->size = size;
|
||||
layer->alpha = alpha;
|
||||
layer->beta = beta;
|
||||
layer->output = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->delta = calloc(h * w * c * batch, sizeof(float));
|
||||
layer->sums = calloc(h*w, sizeof(float));
|
||||
return layer;
|
||||
}
|
||||
|
||||
void resize_normalization_layer(normalization_layer *layer, int h, int w)
|
||||
{
|
||||
layer->h = h;
|
||||
layer->w = w;
|
||||
layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
|
||||
layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
|
||||
layer->sums = realloc(layer->sums, h*w * sizeof(float));
|
||||
}
|
||||
|
||||
void add_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] += src[i]*src[i];
|
||||
}
|
||||
}
|
||||
void sub_square_array(float *src, float *dest, int n)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < n; ++i){
|
||||
dest[i] -= src[i]*src[i];
|
||||
}
|
||||
}
|
||||
|
||||
void forward_normalization_layer(const normalization_layer layer, network_state state)
|
||||
{
|
||||
int i,j,k;
|
||||
memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
|
||||
int imsize = layer.h*layer.w;
|
||||
for(j = 0; j < layer.size/2; ++j){
|
||||
if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
|
||||
}
|
||||
for(k = 0; k < layer.c; ++k){
|
||||
int next = k+layer.size/2;
|
||||
int prev = k-layer.size/2-1;
|
||||
if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
|
||||
if(prev > 0) sub_square_array(state.input+prev*imsize, layer.sums, imsize);
|
||||
for(i = 0; i < imsize; ++i){
|
||||
layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void backward_normalization_layer(const normalization_layer layer, network_state state)
|
||||
{
|
||||
// TODO!
|
||||
// OR NOT TODO!!
|
||||
}
|
||||
|
||||
void visualize_normalization_layer(normalization_layer layer, char *window)
|
||||
{
|
||||
image delta = get_normalization_image(layer);
|
||||
image dc = collapse_image_layers(delta, 1);
|
||||
char buff[256];
|
||||
sprintf(buff, "%s: Output", window);
|
||||
show_image(dc, buff);
|
||||
save_image(dc, buff);
|
||||
free_image(dc);
|
||||
}
|
||||
|
||||
void test_load()
|
||||
{
|
||||
|
367
src/parser.c
367
src/parser.c
@ -10,7 +10,6 @@
|
||||
#include "deconvolutional_layer.h"
|
||||
#include "connected_layer.h"
|
||||
#include "maxpool_layer.h"
|
||||
#include "normalization_layer.h"
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
#include "detection_layer.h"
|
||||
@ -34,7 +33,6 @@ int is_softmax(section *s);
|
||||
int is_crop(section *s);
|
||||
int is_cost(section *s);
|
||||
int is_detection(section *s);
|
||||
int is_normalization(section *s);
|
||||
int is_route(section *s);
|
||||
list *read_cfg(char *filename);
|
||||
|
||||
@ -78,7 +76,7 @@ typedef struct size_params{
|
||||
int c;
|
||||
} size_params;
|
||||
|
||||
deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
|
||||
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
|
||||
{
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
@ -93,20 +91,20 @@ deconvolutional_layer *parse_deconvolutional(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
|
||||
|
||||
deconvolutional_layer *layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
|
||||
deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(weights, layer->filters, c*n*size*size);
|
||||
parse_data(biases, layer->biases, n);
|
||||
parse_data(weights, layer.filters, c*n*size*size);
|
||||
parse_data(biases, layer.biases, n);
|
||||
#ifdef GPU
|
||||
if(weights || biases) push_deconvolutional_layer(*layer);
|
||||
if(weights || biases) push_deconvolutional_layer(layer);
|
||||
#endif
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
convolutional_layer *parse_convolutional(list *options, size_params params)
|
||||
convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
{
|
||||
int n = option_find_int(options, "filters",1);
|
||||
int size = option_find_int(options, "size",1);
|
||||
@ -122,68 +120,68 @@ convolutional_layer *parse_convolutional(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before convolutional layer must output image.");
|
||||
|
||||
convolutional_layer *layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(weights, layer->filters, c*n*size*size);
|
||||
parse_data(biases, layer->biases, n);
|
||||
parse_data(weights, layer.filters, c*n*size*size);
|
||||
parse_data(biases, layer.biases, n);
|
||||
#ifdef GPU
|
||||
if(weights || biases) push_convolutional_layer(*layer);
|
||||
if(weights || biases) push_convolutional_layer(layer);
|
||||
#endif
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
connected_layer *parse_connected(list *options, size_params params)
|
||||
connected_layer parse_connected(list *options, size_params params)
|
||||
{
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
|
||||
connected_layer *layer = make_connected_layer(params.batch, params.inputs, output, activation);
|
||||
connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);
|
||||
|
||||
char *weights = option_find_str(options, "weights", 0);
|
||||
char *biases = option_find_str(options, "biases", 0);
|
||||
parse_data(biases, layer->biases, output);
|
||||
parse_data(weights, layer->weights, params.inputs*output);
|
||||
parse_data(biases, layer.biases, output);
|
||||
parse_data(weights, layer.weights, params.inputs*output);
|
||||
#ifdef GPU
|
||||
if(weights || biases) push_connected_layer(*layer);
|
||||
if(weights || biases) push_connected_layer(layer);
|
||||
#endif
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
softmax_layer *parse_softmax(list *options, size_params params)
|
||||
softmax_layer parse_softmax(list *options, size_params params)
|
||||
{
|
||||
int groups = option_find_int(options, "groups",1);
|
||||
softmax_layer *layer = make_softmax_layer(params.batch, params.inputs, groups);
|
||||
softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
detection_layer *parse_detection(list *options, size_params params)
|
||||
detection_layer parse_detection(list *options, size_params params)
|
||||
{
|
||||
int coords = option_find_int(options, "coords", 1);
|
||||
int classes = option_find_int(options, "classes", 1);
|
||||
int rescore = option_find_int(options, "rescore", 1);
|
||||
int nuisance = option_find_int(options, "nuisance", 0);
|
||||
int background = option_find_int(options, "background", 1);
|
||||
detection_layer *layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
|
||||
detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, rescore, background, nuisance);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
cost_layer *parse_cost(list *options, size_params params)
|
||||
cost_layer parse_cost(list *options, size_params params)
|
||||
{
|
||||
char *type_s = option_find_str(options, "type", "sse");
|
||||
COST_TYPE type = get_cost_type(type_s);
|
||||
cost_layer *layer = make_cost_layer(params.batch, params.inputs, type);
|
||||
cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
crop_layer *parse_crop(list *options, size_params params)
|
||||
crop_layer parse_crop(list *options, size_params params)
|
||||
{
|
||||
int crop_height = option_find_int(options, "crop_height",1);
|
||||
int crop_width = option_find_int(options, "crop_width",1);
|
||||
@ -199,12 +197,12 @@ crop_layer *parse_crop(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before crop layer must output image.");
|
||||
|
||||
crop_layer *layer = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
|
||||
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
maxpool_layer *parse_maxpool(list *options, size_params params)
|
||||
maxpool_layer parse_maxpool(list *options, size_params params)
|
||||
{
|
||||
int stride = option_find_int(options, "stride",1);
|
||||
int size = option_find_int(options, "size",stride);
|
||||
@ -216,39 +214,20 @@ maxpool_layer *parse_maxpool(list *options, size_params params)
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before maxpool layer must output image.");
|
||||
|
||||
maxpool_layer *layer = make_maxpool_layer(batch,h,w,c,size,stride);
|
||||
maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
dropout_layer *parse_dropout(list *options, size_params params)
|
||||
dropout_layer parse_dropout(list *options, size_params params)
|
||||
{
|
||||
float probability = option_find_float(options, "probability", .5);
|
||||
dropout_layer *layer = make_dropout_layer(params.batch, params.inputs, probability);
|
||||
dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
normalization_layer *parse_normalization(list *options, size_params params)
|
||||
{
|
||||
int size = option_find_int(options, "size",1);
|
||||
float alpha = option_find_float(options, "alpha", 0.);
|
||||
float beta = option_find_float(options, "beta", 1.);
|
||||
float kappa = option_find_float(options, "kappa", 1.);
|
||||
|
||||
int batch,h,w,c;
|
||||
h = params.h;
|
||||
w = params.w;
|
||||
c = params.c;
|
||||
batch=params.batch;
|
||||
if(!(h && w && c)) error("Layer before normalization layer must output image.");
|
||||
|
||||
normalization_layer *layer = make_normalization_layer(batch,h,w,c,size, alpha, beta, kappa);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
|
||||
route_layer *parse_route(list *options, size_params params, network net)
|
||||
route_layer parse_route(list *options, size_params params, network net)
|
||||
{
|
||||
char *l = option_find(options, "layers");
|
||||
int len = strlen(l);
|
||||
@ -265,11 +244,26 @@ route_layer *parse_route(list *options, size_params params, network net)
|
||||
int index = atoi(l);
|
||||
l = strchr(l, ',')+1;
|
||||
layers[i] = index;
|
||||
sizes[i] = get_network_output_size_layer(net, index);
|
||||
sizes[i] = net.layers[index].outputs;
|
||||
}
|
||||
int batch = params.batch;
|
||||
|
||||
route_layer *layer = make_route_layer(batch, n, layers, sizes);
|
||||
route_layer layer = make_route_layer(batch, n, layers, sizes);
|
||||
|
||||
convolutional_layer first = net.layers[layers[0]];
|
||||
layer.out_w = first.out_w;
|
||||
layer.out_h = first.out_h;
|
||||
layer.out_c = first.out_c;
|
||||
for(i = 1; i < n; ++i){
|
||||
int index = layers[i];
|
||||
convolutional_layer next = net.layers[index];
|
||||
if(next.out_w == first.out_w && next.out_h == first.out_h){
|
||||
layer.out_c += next.out_c;
|
||||
}else{
|
||||
layer.out_h = layer.out_w = layer.out_c = 0;
|
||||
}
|
||||
}
|
||||
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
@ -318,61 +312,44 @@ network parse_network_cfg(char *filename)
|
||||
fprintf(stderr, "%d: ", count);
|
||||
s = (section *)n->val;
|
||||
options = s->options;
|
||||
layer l = {0};
|
||||
if(is_convolutional(s)){
|
||||
convolutional_layer *layer = parse_convolutional(options, params);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
l = parse_convolutional(options, params);
|
||||
}else if(is_deconvolutional(s)){
|
||||
deconvolutional_layer *layer = parse_deconvolutional(options, params);
|
||||
net.types[count] = DECONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
l = parse_deconvolutional(options, params);
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, params);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
l = parse_connected(options, params);
|
||||
}else if(is_crop(s)){
|
||||
crop_layer *layer = parse_crop(options, params);
|
||||
net.types[count] = CROP;
|
||||
net.layers[count] = layer;
|
||||
l = parse_crop(options, params);
|
||||
}else if(is_cost(s)){
|
||||
cost_layer *layer = parse_cost(options, params);
|
||||
net.types[count] = COST;
|
||||
net.layers[count] = layer;
|
||||
l = parse_cost(options, params);
|
||||
}else if(is_detection(s)){
|
||||
detection_layer *layer = parse_detection(options, params);
|
||||
net.types[count] = DETECTION;
|
||||
net.layers[count] = layer;
|
||||
l = parse_detection(options, params);
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, params);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
l = parse_softmax(options, params);
|
||||
}else if(is_maxpool(s)){
|
||||
maxpool_layer *layer = parse_maxpool(options, params);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
}else if(is_normalization(s)){
|
||||
normalization_layer *layer = parse_normalization(options, params);
|
||||
net.types[count] = NORMALIZATION;
|
||||
net.layers[count] = layer;
|
||||
l = parse_maxpool(options, params);
|
||||
}else if(is_route(s)){
|
||||
route_layer *layer = parse_route(options, params, net);
|
||||
net.types[count] = ROUTE;
|
||||
net.layers[count] = layer;
|
||||
l = parse_route(options, params, net);
|
||||
}else if(is_dropout(s)){
|
||||
dropout_layer *layer = parse_dropout(options, params);
|
||||
net.types[count] = DROPOUT;
|
||||
net.layers[count] = layer;
|
||||
l = parse_dropout(options, params);
|
||||
l.output = net.layers[count-1].output;
|
||||
l.delta = net.layers[count-1].delta;
|
||||
#ifdef GPU
|
||||
l.output_gpu = net.layers[count-1].output_gpu;
|
||||
l.delta_gpu = net.layers[count-1].delta_gpu;
|
||||
#endif
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
net.layers[count] = l;
|
||||
free_section(s);
|
||||
n = n->next;
|
||||
if(n){
|
||||
image im = get_network_image_layer(net, count);
|
||||
params.h = im.h;
|
||||
params.w = im.w;
|
||||
params.c = im.c;
|
||||
params.inputs = get_network_output_size_layer(net, count);
|
||||
params.h = l.out_h;
|
||||
params.w = l.out_w;
|
||||
params.c = l.out_c;
|
||||
params.inputs = l.outputs;
|
||||
}
|
||||
++count;
|
||||
}
|
||||
@ -429,11 +406,6 @@ int is_softmax(section *s)
|
||||
return (strcmp(s->type, "[soft]")==0
|
||||
|| strcmp(s->type, "[softmax]")==0);
|
||||
}
|
||||
int is_normalization(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[lrnorm]")==0
|
||||
|| strcmp(s->type, "[localresponsenormalization]")==0);
|
||||
}
|
||||
int is_route(section *s)
|
||||
{
|
||||
return (strcmp(s->type, "[route]")==0);
|
||||
@ -492,114 +464,6 @@ list *read_cfg(char *filename)
|
||||
return sections;
|
||||
}
|
||||
|
||||
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[convolutional]\n");
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"pad=%d\n"
|
||||
"activation=%s\n",
|
||||
l->n, l->size, l->stride, l->pad,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_deconvolutional_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[deconvolutional]\n");
|
||||
fprintf(fp, "filters=%d\n"
|
||||
"size=%d\n"
|
||||
"stride=%d\n"
|
||||
"activation=%s\n",
|
||||
l->n, l->size, l->stride,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[dropout]\n");
|
||||
fprintf(fp, "probability=%g\n\n", l->probability);
|
||||
}
|
||||
|
||||
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
||||
{
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0) pull_connected_layer(*l);
|
||||
#endif
|
||||
int i;
|
||||
fprintf(fp, "[connected]\n");
|
||||
fprintf(fp, "output=%d\n"
|
||||
"activation=%s\n",
|
||||
l->outputs,
|
||||
get_activation_string(l->activation));
|
||||
fprintf(fp, "biases=");
|
||||
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
||||
fprintf(fp, "\n");
|
||||
fprintf(fp, "weights=");
|
||||
for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
||||
fprintf(fp, "\n\n");
|
||||
}
|
||||
|
||||
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[crop]\n");
|
||||
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
|
||||
}
|
||||
|
||||
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[maxpool]\n");
|
||||
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
|
||||
}
|
||||
|
||||
void print_normalization_cfg(FILE *fp, normalization_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[localresponsenormalization]\n");
|
||||
fprintf(fp, "size=%d\n"
|
||||
"alpha=%g\n"
|
||||
"beta=%g\n"
|
||||
"kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
|
||||
}
|
||||
|
||||
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[softmax]\n");
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[detection]\n");
|
||||
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
||||
{
|
||||
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
|
||||
fprintf(fp, "\n");
|
||||
}
|
||||
|
||||
void save_weights(network net, char *filename)
|
||||
{
|
||||
fprintf(stderr, "Saving weights to %s\n", filename);
|
||||
@ -613,37 +477,35 @@ void save_weights(network net, char *filename)
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net.layers[i];
|
||||
layer l = net.layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_convolutional_layer(layer);
|
||||
pull_convolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fwrite(layer.biases, sizeof(float), layer.n, fp);
|
||||
fwrite(layer.filters, sizeof(float), num, fp);
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fwrite(l.biases, sizeof(float), l.n, fp);
|
||||
fwrite(l.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(net.types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *) net.layers[i];
|
||||
if(l.type == DECONVOLUTIONAL){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_deconvolutional_layer(layer);
|
||||
pull_deconvolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fwrite(layer.biases, sizeof(float), layer.n, fp);
|
||||
fwrite(layer.filters, sizeof(float), num, fp);
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fwrite(l.biases, sizeof(float), l.n, fp);
|
||||
fwrite(l.filters, sizeof(float), num, fp);
|
||||
}
|
||||
if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net.layers[i];
|
||||
if(l.type == CONNECTED){
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
pull_connected_layer(layer);
|
||||
pull_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
fwrite(layer.biases, sizeof(float), layer.outputs, fp);
|
||||
fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
|
||||
fwrite(l.biases, sizeof(float), l.outputs, fp);
|
||||
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
@ -663,35 +525,33 @@ void load_weights_upto(network *net, char *filename, int cutoff)
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net->n && i < cutoff; ++i){
|
||||
if(net->types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *) net->layers[i];
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fread(layer.biases, sizeof(float), layer.n, fp);
|
||||
fread(layer.filters, sizeof(float), num, fp);
|
||||
layer l = net->layers[i];
|
||||
if(l.type == CONVOLUTIONAL){
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fread(l.biases, sizeof(float), l.n, fp);
|
||||
fread(l.filters, sizeof(float), num, fp);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(layer);
|
||||
push_convolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if(net->types[i] == DECONVOLUTIONAL){
|
||||
deconvolutional_layer layer = *(deconvolutional_layer *) net->layers[i];
|
||||
int num = layer.n*layer.c*layer.size*layer.size;
|
||||
fread(layer.biases, sizeof(float), layer.n, fp);
|
||||
fread(layer.filters, sizeof(float), num, fp);
|
||||
if(l.type == DECONVOLUTIONAL){
|
||||
int num = l.n*l.c*l.size*l.size;
|
||||
fread(l.biases, sizeof(float), l.n, fp);
|
||||
fread(l.filters, sizeof(float), num, fp);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_deconvolutional_layer(layer);
|
||||
push_deconvolutional_layer(l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if(net->types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *) net->layers[i];
|
||||
fread(layer.biases, sizeof(float), layer.outputs, fp);
|
||||
fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp);
|
||||
if(l.type == CONNECTED){
|
||||
fread(l.biases, sizeof(float), l.outputs, fp);
|
||||
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_connected_layer(layer);
|
||||
push_connected_layer(l);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
@ -704,34 +564,3 @@ void load_weights(network *net, char *filename)
|
||||
load_weights_upto(net, filename, net->n);
|
||||
}
|
||||
|
||||
void save_network(network net, char *filename)
|
||||
{
|
||||
FILE *fp = fopen(filename, "w");
|
||||
if(!fp) file_error(filename);
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i)
|
||||
{
|
||||
if(net.types[i] == CONVOLUTIONAL)
|
||||
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DECONVOLUTIONAL)
|
||||
print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == CONNECTED)
|
||||
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == CROP)
|
||||
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == MAXPOOL)
|
||||
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DROPOUT)
|
||||
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == NORMALIZATION)
|
||||
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == SOFTMAX)
|
||||
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == DETECTION)
|
||||
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
|
||||
else if(net.types[i] == COST)
|
||||
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
|
@ -3,83 +3,89 @@
|
||||
#include "blas.h"
|
||||
#include <stdio.h>
|
||||
|
||||
route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
|
||||
route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes)
|
||||
{
|
||||
printf("Route Layer:");
|
||||
route_layer *layer = calloc(1, sizeof(route_layer));
|
||||
layer->batch = batch;
|
||||
layer->n = n;
|
||||
layer->input_layers = input_layers;
|
||||
layer->input_sizes = input_sizes;
|
||||
fprintf(stderr,"Route Layer:");
|
||||
route_layer l = {0};
|
||||
l.type = ROUTE;
|
||||
l.batch = batch;
|
||||
l.n = n;
|
||||
l.input_layers = input_layers;
|
||||
l.input_sizes = input_sizes;
|
||||
int i;
|
||||
int outputs = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
printf(" %d", input_layers[i]);
|
||||
fprintf(stderr," %d", input_layers[i]);
|
||||
outputs += input_sizes[i];
|
||||
}
|
||||
printf("\n");
|
||||
layer->outputs = outputs;
|
||||
layer->delta = calloc(outputs*batch, sizeof(float));
|
||||
layer->output = calloc(outputs*batch, sizeof(float));;
|
||||
fprintf(stderr, "\n");
|
||||
l.outputs = outputs;
|
||||
l.inputs = outputs;
|
||||
l.delta = calloc(outputs*batch, sizeof(float));
|
||||
l.output = calloc(outputs*batch, sizeof(float));;
|
||||
#ifdef GPU
|
||||
layer->delta_gpu = cuda_make_array(0, outputs*batch);
|
||||
layer->output_gpu = cuda_make_array(0, outputs*batch);
|
||||
l.delta_gpu = cuda_make_array(0, outputs*batch);
|
||||
l.output_gpu = cuda_make_array(0, outputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void forward_route_layer(const route_layer layer, network net)
|
||||
void forward_route_layer(const route_layer l, network net)
|
||||
{
|
||||
int i, j;
|
||||
int offset = 0;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float *input = get_network_output_layer(net, layer.input_layers[i]);
|
||||
int input_size = layer.input_sizes[i];
|
||||
for(j = 0; j < layer.batch; ++j){
|
||||
copy_cpu(input_size, input + j*input_size, 1, layer.output + offset + j*layer.outputs, 1);
|
||||
for(i = 0; i < l.n; ++i){
|
||||
int index = l.input_layers[i];
|
||||
float *input = net.layers[index].output;
|
||||
int input_size = l.input_sizes[i];
|
||||
for(j = 0; j < l.batch; ++j){
|
||||
copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1);
|
||||
}
|
||||
offset += input_size;
|
||||
}
|
||||
}
|
||||
|
||||
void backward_route_layer(const route_layer layer, network net)
|
||||
void backward_route_layer(const route_layer l, network net)
|
||||
{
|
||||
int i, j;
|
||||
int offset = 0;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float *delta = get_network_delta_layer(net, layer.input_layers[i]);
|
||||
int input_size = layer.input_sizes[i];
|
||||
for(j = 0; j < layer.batch; ++j){
|
||||
copy_cpu(input_size, layer.delta + offset + j*layer.outputs, 1, delta + j*input_size, 1);
|
||||
for(i = 0; i < l.n; ++i){
|
||||
int index = l.input_layers[i];
|
||||
float *delta = net.layers[index].delta;
|
||||
int input_size = l.input_sizes[i];
|
||||
for(j = 0; j < l.batch; ++j){
|
||||
copy_cpu(input_size, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1);
|
||||
}
|
||||
offset += input_size;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void forward_route_layer_gpu(const route_layer layer, network net)
|
||||
void forward_route_layer_gpu(const route_layer l, network net)
|
||||
{
|
||||
int i, j;
|
||||
int offset = 0;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float *input = get_network_output_gpu_layer(net, layer.input_layers[i]);
|
||||
int input_size = layer.input_sizes[i];
|
||||
for(j = 0; j < layer.batch; ++j){
|
||||
copy_ongpu(input_size, input + j*input_size, 1, layer.output_gpu + offset + j*layer.outputs, 1);
|
||||
for(i = 0; i < l.n; ++i){
|
||||
int index = l.input_layers[i];
|
||||
float *input = net.layers[index].output_gpu;
|
||||
int input_size = l.input_sizes[i];
|
||||
for(j = 0; j < l.batch; ++j){
|
||||
copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1);
|
||||
}
|
||||
offset += input_size;
|
||||
}
|
||||
}
|
||||
|
||||
void backward_route_layer_gpu(const route_layer layer, network net)
|
||||
void backward_route_layer_gpu(const route_layer l, network net)
|
||||
{
|
||||
int i, j;
|
||||
int offset = 0;
|
||||
for(i = 0; i < layer.n; ++i){
|
||||
float *delta = get_network_delta_gpu_layer(net, layer.input_layers[i]);
|
||||
int input_size = layer.input_sizes[i];
|
||||
for(j = 0; j < layer.batch; ++j){
|
||||
copy_ongpu(input_size, layer.delta_gpu + offset + j*layer.outputs, 1, delta + j*input_size, 1);
|
||||
for(i = 0; i < l.n; ++i){
|
||||
int index = l.input_layers[i];
|
||||
float *delta = net.layers[index].delta_gpu;
|
||||
int input_size = l.input_sizes[i];
|
||||
for(j = 0; j < l.batch; ++j){
|
||||
copy_ongpu(input_size, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1);
|
||||
}
|
||||
offset += input_size;
|
||||
}
|
||||
|
@ -1,28 +1,17 @@
|
||||
#ifndef ROUTE_LAYER_H
|
||||
#define ROUTE_LAYER_H
|
||||
#include "network.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int batch;
|
||||
int outputs;
|
||||
int n;
|
||||
int * input_layers;
|
||||
int * input_sizes;
|
||||
float * delta;
|
||||
float * output;
|
||||
#ifdef GPU
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
} route_layer;
|
||||
typedef layer route_layer;
|
||||
|
||||
route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_size);
|
||||
void forward_route_layer(const route_layer layer, network net);
|
||||
void backward_route_layer(const route_layer layer, network net);
|
||||
route_layer make_route_layer(int batch, int n, int *input_layers, int *input_size);
|
||||
void forward_route_layer(const route_layer l, network net);
|
||||
void backward_route_layer(const route_layer l, network net);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_route_layer_gpu(const route_layer layer, network net);
|
||||
void backward_route_layer_gpu(const route_layer layer, network net);
|
||||
void forward_route_layer_gpu(const route_layer l, network net);
|
||||
void backward_route_layer_gpu(const route_layer l, network net);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -7,21 +7,23 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
softmax_layer *make_softmax_layer(int batch, int inputs, int groups)
|
||||
softmax_layer make_softmax_layer(int batch, int inputs, int groups)
|
||||
{
|
||||
assert(inputs%groups == 0);
|
||||
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
|
||||
softmax_layer *layer = calloc(1, sizeof(softmax_layer));
|
||||
layer->batch = batch;
|
||||
layer->groups = groups;
|
||||
layer->inputs = inputs;
|
||||
layer->output = calloc(inputs*batch, sizeof(float));
|
||||
layer->delta = calloc(inputs*batch, sizeof(float));
|
||||
softmax_layer l = {0};
|
||||
l.type = SOFTMAX;
|
||||
l.batch = batch;
|
||||
l.groups = groups;
|
||||
l.inputs = inputs;
|
||||
l.outputs = inputs;
|
||||
l.output = calloc(inputs*batch, sizeof(float));
|
||||
l.delta = calloc(inputs*batch, sizeof(float));
|
||||
#ifdef GPU
|
||||
layer->output_gpu = cuda_make_array(layer->output, inputs*batch);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch);
|
||||
l.output_gpu = cuda_make_array(l.output, inputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
|
||||
#endif
|
||||
return layer;
|
||||
return l;
|
||||
}
|
||||
|
||||
void softmax_array(float *input, int n, float *output)
|
||||
@ -42,21 +44,21 @@ void softmax_array(float *input, int n, float *output)
|
||||
}
|
||||
}
|
||||
|
||||
void forward_softmax_layer(const softmax_layer layer, network_state state)
|
||||
void forward_softmax_layer(const softmax_layer l, network_state state)
|
||||
{
|
||||
int b;
|
||||
int inputs = layer.inputs / layer.groups;
|
||||
int batch = layer.batch * layer.groups;
|
||||
int inputs = l.inputs / l.groups;
|
||||
int batch = l.batch * l.groups;
|
||||
for(b = 0; b < batch; ++b){
|
||||
softmax_array(state.input+b*inputs, inputs, layer.output+b*inputs);
|
||||
softmax_array(state.input+b*inputs, inputs, l.output+b*inputs);
|
||||
}
|
||||
}
|
||||
|
||||
void backward_softmax_layer(const softmax_layer layer, network_state state)
|
||||
void backward_softmax_layer(const softmax_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.inputs*layer.batch; ++i){
|
||||
state.delta[i] = layer.delta[i];
|
||||
for(i = 0; i < l.inputs*l.batch; ++i){
|
||||
state.delta[i] = l.delta[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,28 +1,19 @@
|
||||
#ifndef SOFTMAX_LAYER_H
|
||||
#define SOFTMAX_LAYER_H
|
||||
#include "params.h"
|
||||
#include "layer.h"
|
||||
|
||||
typedef struct {
|
||||
int inputs;
|
||||
int batch;
|
||||
int groups;
|
||||
float *delta;
|
||||
float *output;
|
||||
#ifdef GPU
|
||||
float * delta_gpu;
|
||||
float * output_gpu;
|
||||
#endif
|
||||
} softmax_layer;
|
||||
typedef layer softmax_layer;
|
||||
|
||||
void softmax_array(float *input, int n, float *output);
|
||||
softmax_layer *make_softmax_layer(int batch, int inputs, int groups);
|
||||
void forward_softmax_layer(const softmax_layer layer, network_state state);
|
||||
void backward_softmax_layer(const softmax_layer layer, network_state state);
|
||||
softmax_layer make_softmax_layer(int batch, int inputs, int groups);
|
||||
void forward_softmax_layer(const softmax_layer l, network_state state);
|
||||
void backward_softmax_layer(const softmax_layer l, network_state state);
|
||||
|
||||
#ifdef GPU
|
||||
void pull_softmax_layer_output(const softmax_layer layer);
|
||||
void forward_softmax_layer_gpu(const softmax_layer layer, network_state state);
|
||||
void backward_softmax_layer_gpu(const softmax_layer layer, network_state state);
|
||||
void pull_softmax_layer_output(const softmax_layer l);
|
||||
void forward_softmax_layer_gpu(const softmax_layer l, network_state state);
|
||||
void backward_softmax_layer_gpu(const softmax_layer l, network_state state);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user