mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
CUDA minor performance improvement
This commit is contained in:
@ -192,8 +192,23 @@ __global__ void activate_array_leaky_kernel(float *x, int n)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (index < n) {
|
||||
float val = x[index];
|
||||
x[index] = (val > 0) ? val : val / 10;
|
||||
x[index] = leaky_activate_kernel(x[index]);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void activate_array_selu_kernel(float *x, int n)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (index < n) {
|
||||
x[index] = selu_activate_kernel(x[index]);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void activate_array_logistic_kernel(float *x, int n)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (index < n) {
|
||||
x[index] = logistic_activate_kernel(x[index]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -205,7 +220,10 @@ __global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delt
|
||||
|
||||
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
|
||||
{
|
||||
if(a == LEAKY) activate_array_leaky_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
||||
if (a == LINEAR) return;
|
||||
else if(a == LEAKY) activate_array_leaky_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
||||
else if (a == LOGISTIC) activate_array_logistic_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
||||
else if (a == SELU) activate_array_selu_kernel << <(n / BLOCK + 1), BLOCK, 0, get_cuda_stream() >> >(x, n);
|
||||
else activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
@ -46,6 +46,7 @@ void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *er
|
||||
|
||||
void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
|
||||
void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
void simple_copy_ongpu(int size, float *src, float *dst);
|
||||
void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY);
|
||||
void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY);
|
||||
void scal_ongpu(int N, float ALPHA, float * X, int INCX);
|
||||
@ -69,6 +70,7 @@ void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *varianc
|
||||
void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance);
|
||||
void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean);
|
||||
void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
||||
void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out);
|
||||
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates);
|
||||
void scale_bias_gpu(float *output, float *biases, int batch, int n, int size);
|
||||
|
@ -439,6 +439,13 @@ __global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int
|
||||
if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX];
|
||||
}
|
||||
|
||||
__global__ void simple_copy_kernel(int size, float *src, float *dst)
|
||||
{
|
||||
int index = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (index < size)
|
||||
dst[index] = src[index];
|
||||
}
|
||||
|
||||
__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -557,6 +564,13 @@ extern "C" void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY)
|
||||
copy_ongpu_offset(N, X, 0, INCX, Y, 0, INCY);
|
||||
}
|
||||
|
||||
extern "C" void simple_copy_ongpu(int size, float *src, float *dst)
|
||||
{
|
||||
const int num_blocks = size / BLOCK + 1;
|
||||
simple_copy_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(size, src, dst);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void mul_ongpu(int N, float * X, int INCX, float * Y, int INCY)
|
||||
{
|
||||
mul_kernel<<<cuda_gridsize(N), BLOCK>>>(N, X, INCX, Y, INCY);
|
||||
@ -678,6 +692,41 @@ extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void input_shortcut_kernel(float *in, int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
|
||||
{
|
||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (id >= size) return;
|
||||
int i = id % minw;
|
||||
id /= minw;
|
||||
int j = id % minh;
|
||||
id /= minh;
|
||||
int k = id % minc;
|
||||
id /= minc;
|
||||
int b = id % batch;
|
||||
|
||||
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
|
||||
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
|
||||
out[out_index] = in[out_index] + add[add_index];
|
||||
}
|
||||
|
||||
extern "C" void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
|
||||
{
|
||||
int minw = (w1 < w2) ? w1 : w2;
|
||||
int minh = (h1 < h2) ? h1 : h2;
|
||||
int minc = (c1 < c2) ? c1 : c2;
|
||||
|
||||
int stride = w1 / w2;
|
||||
int sample = w2 / w1;
|
||||
assert(stride == h1 / h2);
|
||||
assert(sample == h2 / h1);
|
||||
if (stride < 1) stride = 1;
|
||||
if (sample < 1) sample = 1;
|
||||
|
||||
int size = batch * minw * minh * minc;
|
||||
input_shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(in, size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error)
|
||||
{
|
||||
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
@ -877,7 +926,7 @@ __global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int bat
|
||||
extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
|
||||
{
|
||||
size_t size = w*h*c*batch*stride*stride;
|
||||
upsample_kernel << <cuda_gridsize(size), BLOCK >> >(size, in, w, h, c, batch, stride, forward, scale, out);
|
||||
upsample_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(size, in, w, h, c, batch, stride, forward, scale, out);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
|
@ -36,7 +36,7 @@ __global__ void binarize_kernel(float *x, int n, float *binary)
|
||||
|
||||
void binarize_gpu(float *x, int n, float *binary)
|
||||
{
|
||||
binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary);
|
||||
binarize_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(x, n, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
@ -79,7 +79,7 @@ __global__ void binarize_weights_kernel(float *weights, int n, int size, float *
|
||||
|
||||
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
|
||||
{
|
||||
binarize_weights_kernel << <cuda_gridsize(n), BLOCK >> >(weights, n, size, binary);
|
||||
binarize_weights_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(weights, n, size, binary);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
@ -126,7 +126,7 @@ void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, f
|
||||
|
||||
set_zero_kernel << <(n/BLOCK + 1), BLOCK >> > (mean_arr_gpu, n);
|
||||
reduce_kernel << <num_blocks, BLOCK >> > (weights, n, size, mean_arr_gpu);
|
||||
binarize_weights_mean_kernel << <num_blocks, BLOCK >> > (weights, n, size, binary, mean_arr_gpu);
|
||||
binarize_weights_mean_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, binary, mean_arr_gpu);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
else {
|
||||
@ -296,7 +296,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
//printf("\n n = %d, n % 32 = %d, new_ldb = %d, new_ldb % 32 = %d \n", n, n % 32, new_ldb, new_ldb % 32);
|
||||
|
||||
//start_timer();
|
||||
transpose_uint32_gpu_2((uint32_t *)state.workspace, (uint32_t *)l.transposed_align_workspace_gpu, new_k, n, n, new_ldb);
|
||||
transpose_uint32_gpu((uint32_t *)state.workspace, (uint32_t *)l.transposed_align_workspace_gpu, new_k, n, n, new_ldb);
|
||||
//cudaDeviceSynchronize();
|
||||
//stop_timer_and_show_name("transpose_uint32_gpu");
|
||||
|
||||
|
@ -883,7 +883,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
|
||||
//gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
//gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
|
||||
if (l.xnor && l.align_bit_weights && !state.train && (l.stride == 1 && l.pad == 1))
|
||||
if (l.xnor && l.align_bit_weights && !state.train)
|
||||
{
|
||||
memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
|
||||
|
||||
|
@ -73,8 +73,10 @@ void backward_shortcut_layer(const layer l, network_state state)
|
||||
#ifdef GPU
|
||||
void forward_shortcut_layer_gpu(const layer l, network_state state)
|
||||
{
|
||||
copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
||||
shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
|
||||
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
|
||||
//simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
|
||||
//shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
|
||||
input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
|
@ -399,14 +399,15 @@ int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh,
|
||||
|
||||
void forward_yolo_layer_gpu(const layer l, network_state state)
|
||||
{
|
||||
copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
|
||||
//copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
|
||||
simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu);
|
||||
int b, n;
|
||||
for (b = 0; b < l.batch; ++b){
|
||||
for(n = 0; n < l.n; ++n){
|
||||
int index = entry_index(l, b, n*l.w*l.h, 0);
|
||||
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);
|
||||
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); // x,y
|
||||
index = entry_index(l, b, n*l.w*l.h, 4);
|
||||
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC);
|
||||
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness
|
||||
}
|
||||
}
|
||||
if(!state.train || l.onlyforward){
|
||||
|
Reference in New Issue
Block a user