Improve training performance - batch-norm using cuDNN.

This commit is contained in:
AlexeyAB
2018-03-20 02:16:51 +03:00
parent 2f52cfeb07
commit 537d135feb
12 changed files with 193 additions and 42 deletions

View File

@ -52,6 +52,12 @@ layer make_batchnorm_layer(int batch, int w, int h, int c)
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#ifdef CUDNN
cudnnCreateTensorDescriptor(&layer.normTensorDesc);
cudnnCreateTensorDescriptor(&layer.dstTensorDesc);
cudnnSetTensor4dDescriptor(layer.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w);
cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1);
#endif
#endif
return layer;
}
@ -170,7 +176,7 @@ void push_batchnorm_layer(layer l)
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c);
}
/*
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
@ -209,3 +215,98 @@ void backward_batchnorm_layer_gpu(const layer l, network_state state)
if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
}
#endif
*/
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
if (state.train) {
#ifdef CUDNN
float one = 1;
float zero = 0;
cudnnBatchNormalizationForwardTraining(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
l.dstTensorDesc,
l.x_gpu,
l.dstTensorDesc,
l.output_gpu,
l.normTensorDesc,
l.scales_gpu,
l.biases_gpu,
.01,
l.rolling_mean_gpu,
l.rolling_variance_gpu,
.00001,
l.mean_gpu,
l.variance_gpu);
#else
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
#endif
}
else {
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
}
}
void backward_batchnorm_layer_gpu(layer l, network_state state)
{
if (!state.train) {
l.mean_gpu = l.rolling_mean_gpu;
l.variance_gpu = l.rolling_variance_gpu;
}
#ifdef CUDNN
float one = 1;
float zero = 0;
cudnnBatchNormalizationBackward(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
&one,
&one,
l.dstTensorDesc,
l.x_gpu,
l.dstTensorDesc,
l.delta_gpu,
l.dstTensorDesc,
l.x_norm_gpu,
l.normTensorDesc,
l.scales_gpu,
l.scale_updates_gpu,
l.bias_updates_gpu,
.00001,
l.mean_gpu,
l.variance_gpu);
copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1);
#else
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
#endif
if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
}
#endif

View File

@ -80,6 +80,7 @@ void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forwa
void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output);
void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t);
void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t);
void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out);

View File

@ -145,8 +145,8 @@ __global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
x[index] = x[index] - (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps));
//if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
x[index] = x[index] - (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrtf(v[index]) + eps));
//if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrtf(1.F-powf(B2, t)) / (1.F-powf(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
}
extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
@ -155,13 +155,27 @@ extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2
check_error(cudaPeekAtLastError());
}
extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
{
scal_ongpu(n, B1, m, 1);
scal_ongpu(n, B2, v, 1);
axpy_ongpu(n, -decay*batch, w, 1, d, 1);
axpy_ongpu(n, (1 - B1), d, 1, m, 1);
mul_ongpu(n, d, 1, d, 1);
axpy_ongpu(n, (1 - B2), d, 1, v, 1);
adam_gpu(n, w, m, v, B1, B2, rate, eps, t);
fill_ongpu(n, 0, d, 1);
}
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (index >= N) return;
int f = (index/spatial)%filters;
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
x[index] = (x[index] - mean[f])/(sqrtf(variance[f]) + .000001f);
}
__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@ -170,7 +184,7 @@ __global__ void normalize_delta_kernel(int N, float *x, float *mean, float *vari
if (index >= N) return;
int f = (index/spatial)%filters;
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
}
extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
@ -192,7 +206,7 @@ __global__ void variance_delta_kernel(float *x, float *delta, float *mean, floa
variance_delta[i] += delta[index]*(x[index] - mean[i]);
}
}
variance_delta[i] *= -.5 * pow(variance[i] + .000001f, (float)(-3./2.));
variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.));
}
__global__ void accumulate_kernel(float *x, int n, int groups, float *sum)
@ -230,7 +244,7 @@ __global__ void fast_mean_delta_kernel(float *delta, float *variance, int batch,
for(i = 0; i < threads; ++i){
mean_delta[filter] += local[i];
}
mean_delta[filter] *= (-1./sqrt(variance[filter] + .000001f));
mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f));
}
}
@ -259,7 +273,7 @@ __global__ void fast_variance_delta_kernel(float *x, float *delta, float *mean,
for(i = 0; i < threads; ++i){
variance_delta[filter] += local[i];
}
variance_delta[filter] *= -.5 * pow(variance[filter] + .000001f, (float)(-3./2.));
variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.));
}
}
@ -276,7 +290,7 @@ __global__ void mean_delta_kernel(float *delta, float *variance, int batch, int
mean_delta[i] += delta[index];
}
}
mean_delta[i] *= (-1./sqrt(variance[i] + .000001f));
mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f));
}
extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
@ -299,7 +313,7 @@ extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, flo
__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean)
{
float scale = 1./(batch * spatial);
float scale = 1.F/(batch * spatial);
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
int j,k;
@ -315,7 +329,7 @@ __global__ void mean_kernel(float *x, int batch, int filters, int spatial, floa
__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance)
{
float scale = 1./(batch * spatial - 1);
float scale = 1.F/(batch * spatial - 1);
int j,k;
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= filters) return;
@ -323,7 +337,7 @@ __global__ void variance_kernel(float *x, float *mean, int batch, int filters, i
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance[i] += pow((x[index] - mean[i]), 2);
variance[i] += powf((x[index] - mean[i]), 2);
}
}
variance[i] *= scale;
@ -370,7 +384,7 @@ __global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, f
__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA);
}
__global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
@ -474,7 +488,7 @@ __global__ void fast_variance_kernel(float *x, float *mean, int batch, int filt
for(i = 0; i < spatial; i += threads){
int index = j*spatial*filters + filter*spatial + i + id;
local[id] += (i+id < spatial) ? pow((x[index] - mean[filter]), 2) : 0;
local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0;
}
}
__syncthreads();
@ -646,7 +660,7 @@ extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int
if(sample < 1) sample = 1;
int size = batch * minw * minh * minc;
shortcut_kernel<<<cuda_gridsize(size), BLOCK>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out);
check_error(cudaPeekAtLastError());
}
@ -769,3 +783,4 @@ extern "C" void softmax_gpu(float *input, int n, int offset, int groups, float t
softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output);
check_error(cudaPeekAtLastError());
}

View File

@ -97,6 +97,12 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
l.x_gpu = cuda_make_array(l.output, l.batch*outputs);
l.x_norm_gpu = cuda_make_array(l.output, l.batch*outputs);
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnSetTensor4dDescriptor(l.dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l.batch, l.out_c, l.out_h, l.out_w);
cudnnSetTensor4dDescriptor(l.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l.out_c, 1, 1);
#endif
}
#endif
l.activation = activation;
@ -280,12 +286,13 @@ void forward_connected_layer_gpu(connected_layer l, network_state state)
float * b = l.weights_gpu;
float * c = l.output_gpu;
gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
if(l.batch_normalize){
forward_batchnorm_layer_gpu(l, state);
}
for(i = 0; i < l.batch; ++i){
axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
}
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, state);
}
else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.outputs, 1);
}
//for(i = 0; i < l.batch; ++i) axpy_ongpu(l.outputs, 1, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
}

View File

@ -37,7 +37,7 @@ __global__ void binarize_input_kernel(float *input, int n, int size, float *bina
int i = 0;
float mean = 0;
for(i = 0; i < n; ++i){
mean += abs(input[i*size + s]);
mean += fabs(input[i*size + s]);
}
mean = mean / n;
for(i = 0; i < n; ++i){
@ -59,7 +59,7 @@ __global__ void binarize_weights_kernel(float *weights, int n, int size, float *
int i = 0;
float mean = 0;
for(i = 0; i < size; ++i){
mean += abs(weights[f*size + i]);
mean += fabs(weights[f*size + i]);
}
mean = mean / size;
for(i = 0; i < size; ++i){
@ -205,8 +205,10 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, state);
}
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.dot > 0) dot_error_gpu(l);

View File

@ -174,6 +174,9 @@ void cudnn_convolutional_setup(layer *l, int cudnn_preference)
cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w);
cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w);
cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
// batch norm
cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1);
#if(CUDNN_MAJOR >= 6)
cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT); // cudnn >= 6.0
#else
@ -341,6 +344,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
}
#ifdef CUDNN
cudnnCreateTensorDescriptor(&l.normTensorDesc);
cudnnCreateTensorDescriptor(&l.srcTensorDesc);
cudnnCreateTensorDescriptor(&l.dstTensorDesc);
cudnnCreateFilterDescriptor(&l.weightDesc);

View File

@ -19,19 +19,25 @@ extern int gpu_index;
#include "cudnn.h"
#endif
void check_error(cudaError_t status);
cublasHandle_t blas_handle();
float *cuda_make_array(float *x, size_t n);
int *cuda_make_int_array(size_t n);
void cuda_push_array(float *x_gpu, float *x, size_t n);
void cuda_pull_array(float *x_gpu, float *x, size_t n);
void cuda_set_device(int n);
int cuda_get_device();
void cuda_free(float *x_gpu);
void cuda_random(float *x_gpu, size_t n);
float cuda_compare(float *x_gpu, float *x, size_t n, char *s);
dim3 cuda_gridsize(size_t n);
cudaStream_t get_cuda_stream();
#ifdef __cplusplus
extern "C" {
#endif
void check_error(cudaError_t status);
cublasHandle_t blas_handle();
float *cuda_make_array(float *x, size_t n);
int *cuda_make_int_array(size_t n);
void cuda_push_array(float *x_gpu, float *x, size_t n);
void cuda_pull_array(float *x_gpu, float *x, size_t n);
void cuda_set_device(int n);
int cuda_get_device();
void cuda_free(float *x_gpu);
void cuda_random(float *x_gpu, size_t n);
float cuda_compare(float *x_gpu, float *x, size_t n, char *s);
dim3 cuda_gridsize(size_t n);
cudaStream_t get_cuda_stream();
#ifdef __cplusplus
}
#endif
#ifdef CUDNN
cudnnHandle_t cudnn_handle();

View File

@ -91,7 +91,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
args.small_object = l.small_object;
args.d = &buffer;
args.type = DETECTION_DATA;
args.threads = 8; // 64
args.threads = 64; // 8
args.angle = net.angle;
args.exposure = net.exposure;
@ -1031,6 +1031,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
}
image im = load_image_color(input,0,0);
image sized = resize_image(im, net.w, net.h);
//image sized = letterbox_image(im, net.w, net.h);
layer l = net.layers[net.n-1];
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));

View File

@ -352,6 +352,7 @@ IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_li
}
cvPutText(img, "Iteration number", cvPoint(draw_size / 2, img_size - 10), &font, CV_RGB(0, 0, 0));
cvPutText(img, "Press 's' to save: chart.jpg", cvPoint(5, img_size - 10), &font, CV_RGB(0, 0, 0));
printf(" If error occurs - run training with flag: -dont_show \n");
cvNamedWindow("average loss", CV_WINDOW_NORMAL);
cvMoveWindow("average loss", 0, 0);
cvResizeWindow("average loss", img_size, img_size);

View File

@ -42,6 +42,18 @@ typedef enum{
SSE, MASKED, SMOOTH
} COST_TYPE;
typedef struct {
int batch;
float learning_rate;
float momentum;
float decay;
int adam;
float B1;
float B2;
float eps;
int t;
} update_args;
struct layer{
LAYER_TYPE type;
ACTIVATION activation;
@ -261,6 +273,7 @@ struct layer{
#ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t normTensorDesc;
cudnnFilterDescriptor_t weightDesc;
cudnnFilterDescriptor_t dweightDesc;
cudnnConvolutionDescriptor_t convDesc;

View File

@ -121,7 +121,7 @@ void forward_backward_network_gpu(network net, float *x, float *y)
}
#endif
forward_network_gpu(net, state);
cudaStreamSynchronize(get_cuda_stream());
//cudaStreamSynchronize(get_cuda_stream());
backward_network_gpu(net, state);
}

View File

@ -434,7 +434,7 @@ void forward_region_layer_gpu(const region_layer l, network_state state)
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
cudaStreamSynchronize(get_cuda_stream());
//cudaStreamSynchronize(get_cuda_stream());
network_state cpu_state = state;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
@ -444,7 +444,7 @@ void forward_region_layer_gpu(const region_layer l, network_state state)
free(cpu_state.input);
if(!state.train) return;
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
cudaStreamSynchronize(get_cuda_stream());
//cudaStreamSynchronize(get_cuda_stream());
if(cpu_state.truth) free(cpu_state.truth);
}