mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
cpu batch norm works
This commit is contained in:
parent
c6afc7ff14
commit
62235e9aa3
4
Makefile
4
Makefile
@ -50,7 +50,7 @@ endif
|
|||||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||||
DEPS = $(wildcard src/*.h) Makefile
|
DEPS = $(wildcard src/*.h) Makefile
|
||||||
|
|
||||||
all: obj results $(EXEC)
|
all: obj backup results $(EXEC)
|
||||||
|
|
||||||
$(EXEC): $(OBJS)
|
$(EXEC): $(OBJS)
|
||||||
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
@ -63,6 +63,8 @@ $(OBJDIR)%.o: %.cu $(DEPS)
|
|||||||
|
|
||||||
obj:
|
obj:
|
||||||
mkdir -p obj
|
mkdir -p obj
|
||||||
|
backup:
|
||||||
|
mkdir -p backup
|
||||||
results:
|
results:
|
||||||
mkdir -p results
|
mkdir -p results
|
||||||
|
|
||||||
|
@ -84,6 +84,7 @@ activation=leaky
|
|||||||
[maxpool]
|
[maxpool]
|
||||||
size=2
|
size=2
|
||||||
stride=2
|
stride=2
|
||||||
|
padding=1
|
||||||
|
|
||||||
[convolutional]
|
[convolutional]
|
||||||
batch_normalize=1
|
batch_normalize=1
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
[net]
|
[net]
|
||||||
batch=64
|
batch=64
|
||||||
subdivisions=8
|
subdivisions=8
|
||||||
height=416
|
|
||||||
width=416
|
width=416
|
||||||
|
height=416
|
||||||
channels=3
|
channels=3
|
||||||
momentum=0.9
|
momentum=0.9
|
||||||
decay=0.0005
|
decay=0.0005
|
||||||
|
@ -129,15 +129,31 @@ void forward_batchnorm_layer(layer l, network_state state)
|
|||||||
if(state.train){
|
if(state.train){
|
||||||
mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
|
mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
|
||||||
variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
|
variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
|
||||||
|
|
||||||
|
scal_cpu(l.out_c, .99, l.rolling_mean, 1);
|
||||||
|
axpy_cpu(l.out_c, .01, l.mean, 1, l.rolling_mean, 1);
|
||||||
|
scal_cpu(l.out_c, .99, l.rolling_variance, 1);
|
||||||
|
axpy_cpu(l.out_c, .01, l.variance, 1, l.rolling_variance, 1);
|
||||||
|
|
||||||
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
|
||||||
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
|
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
|
||||||
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
|
||||||
} else {
|
} else {
|
||||||
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
|
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
|
||||||
}
|
}
|
||||||
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
||||||
}
|
}
|
||||||
|
|
||||||
void backward_batchnorm_layer(const layer layer, network_state state)
|
void backward_batchnorm_layer(const layer l, network_state state)
|
||||||
{
|
{
|
||||||
|
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
|
||||||
|
|
||||||
|
scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
|
||||||
|
|
||||||
|
mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
|
||||||
|
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
|
||||||
|
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
|
||||||
|
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
|
23
src/cifar.c
23
src/cifar.c
@ -166,6 +166,28 @@ void test_cifar(char *filename, char *weightfile)
|
|||||||
free_data(test);
|
free_data(test);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void extract_cifar()
|
||||||
|
{
|
||||||
|
char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
|
||||||
|
int i;
|
||||||
|
data train = load_all_cifar10();
|
||||||
|
data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
|
||||||
|
for(i = 0; i < train.X.rows; ++i){
|
||||||
|
image im = float_to_image(32, 32, 3, train.X.vals[i]);
|
||||||
|
int class = max_index(train.y.vals[i], 10);
|
||||||
|
char buff[256];
|
||||||
|
sprintf(buff, "data/cifar/train/%d_%s",i,labels[class]);
|
||||||
|
save_image_png(im, buff);
|
||||||
|
}
|
||||||
|
for(i = 0; i < test.X.rows; ++i){
|
||||||
|
image im = float_to_image(32, 32, 3, test.X.vals[i]);
|
||||||
|
int class = max_index(test.y.vals[i], 10);
|
||||||
|
char buff[256];
|
||||||
|
sprintf(buff, "data/cifar/test/%d_%s",i,labels[class]);
|
||||||
|
save_image_png(im, buff);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void test_cifar_csv(char *filename, char *weightfile)
|
void test_cifar_csv(char *filename, char *weightfile)
|
||||||
{
|
{
|
||||||
network net = parse_network_cfg(filename);
|
network net = parse_network_cfg(filename);
|
||||||
@ -243,6 +265,7 @@ void run_cifar(int argc, char **argv)
|
|||||||
char *cfg = argv[3];
|
char *cfg = argv[3];
|
||||||
char *weights = (argc > 4) ? argv[4] : 0;
|
char *weights = (argc > 4) ? argv[4] : 0;
|
||||||
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
|
if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
|
||||||
|
else if(0==strcmp(argv[2], "extract")) extract_cifar();
|
||||||
else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
|
else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
|
||||||
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
|
else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
|
||||||
else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
|
else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
|
||||||
|
@ -206,8 +206,8 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
|||||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||||
l.inputs = l.w * l.h * l.c;
|
l.inputs = l.w * l.h * l.c;
|
||||||
|
|
||||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
l.output = calloc(l.batch*l.outputs, sizeof(float));
|
||||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
l.delta = calloc(l.batch*l.outputs, sizeof(float));
|
||||||
|
|
||||||
l.forward = forward_convolutional_layer;
|
l.forward = forward_convolutional_layer;
|
||||||
l.backward = backward_convolutional_layer;
|
l.backward = backward_convolutional_layer;
|
||||||
@ -232,8 +232,13 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
|||||||
l.mean = calloc(n, sizeof(float));
|
l.mean = calloc(n, sizeof(float));
|
||||||
l.variance = calloc(n, sizeof(float));
|
l.variance = calloc(n, sizeof(float));
|
||||||
|
|
||||||
|
l.mean_delta = calloc(n, sizeof(float));
|
||||||
|
l.variance_delta = calloc(n, sizeof(float));
|
||||||
|
|
||||||
l.rolling_mean = calloc(n, sizeof(float));
|
l.rolling_mean = calloc(n, sizeof(float));
|
||||||
l.rolling_variance = calloc(n, sizeof(float));
|
l.rolling_variance = calloc(n, sizeof(float));
|
||||||
|
l.x = calloc(l.batch*l.outputs, sizeof(float));
|
||||||
|
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
|
||||||
}
|
}
|
||||||
if(adam){
|
if(adam){
|
||||||
l.adam = 1;
|
l.adam = 1;
|
||||||
@ -357,17 +362,19 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
|||||||
l->outputs = l->out_h * l->out_w * l->out_c;
|
l->outputs = l->out_h * l->out_w * l->out_c;
|
||||||
l->inputs = l->w * l->h * l->c;
|
l->inputs = l->w * l->h * l->c;
|
||||||
|
|
||||||
l->output = realloc(l->output,
|
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
|
||||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
|
||||||
l->delta = realloc(l->delta,
|
if(l->batch_normalize){
|
||||||
l->batch*out_h * out_w * l->n*sizeof(float));
|
l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
|
||||||
|
l->x_norm = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef GPU
|
#ifdef GPU
|
||||||
cuda_free(l->delta_gpu);
|
cuda_free(l->delta_gpu);
|
||||||
cuda_free(l->output_gpu);
|
cuda_free(l->output_gpu);
|
||||||
|
|
||||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
|
||||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
|
||||||
|
|
||||||
if(l->batch_normalize){
|
if(l->batch_normalize){
|
||||||
cuda_free(l->x_gpu);
|
cuda_free(l->x_gpu);
|
||||||
@ -423,41 +430,8 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
|||||||
int out_w = convolutional_out_width(l);
|
int out_w = convolutional_out_width(l);
|
||||||
int i;
|
int i;
|
||||||
|
|
||||||
|
|
||||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||||
|
|
||||||
/*
|
|
||||||
if(l.binary){
|
|
||||||
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
|
|
||||||
binarize_weights2(l.weights, l.n, l.c*l.size*l.size, l.cweights, l.scales);
|
|
||||||
swap_binary(&l);
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
if(l.binary){
|
|
||||||
int m = l.n;
|
|
||||||
int k = l.size*l.size*l.c;
|
|
||||||
int n = out_h*out_w;
|
|
||||||
|
|
||||||
char *a = l.cweights;
|
|
||||||
float *b = state.workspace;
|
|
||||||
float *c = l.output;
|
|
||||||
|
|
||||||
for(i = 0; i < l.batch; ++i){
|
|
||||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
|
||||||
l.size, l.stride, l.pad, b);
|
|
||||||
gemm_bin(m,n,k,1,a,k,b,n,c,n);
|
|
||||||
c += n*m;
|
|
||||||
state.input += l.c*l.h*l.w;
|
|
||||||
}
|
|
||||||
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
|
|
||||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
|
||||||
activate_array(l.output, m*n*l.batch, l.activation);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
|
|
||||||
if(l.xnor){
|
if(l.xnor){
|
||||||
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
|
binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
|
||||||
swap_binary(&l);
|
swap_binary(&l);
|
||||||
@ -469,10 +443,6 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
|||||||
int k = l.size*l.size*l.c;
|
int k = l.size*l.size*l.c;
|
||||||
int n = out_h*out_w;
|
int n = out_h*out_w;
|
||||||
|
|
||||||
if (l.xnor && l.c%32 == 0 && AI2) {
|
|
||||||
forward_xnor_layer(l, state);
|
|
||||||
printf("xnor\n");
|
|
||||||
} else {
|
|
||||||
|
|
||||||
float *a = l.weights;
|
float *a = l.weights;
|
||||||
float *b = state.workspace;
|
float *b = state.workspace;
|
||||||
@ -485,7 +455,6 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
|||||||
c += n*m;
|
c += n*m;
|
||||||
state.input += l.c*l.h*l.w;
|
state.input += l.c*l.h*l.w;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
if(l.batch_normalize){
|
if(l.batch_normalize){
|
||||||
forward_batchnorm_layer(l, state);
|
forward_batchnorm_layer(l, state);
|
||||||
@ -507,6 +476,10 @@ void backward_convolutional_layer(convolutional_layer l, network_state state)
|
|||||||
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
|
gradient_array(l.output, m*k*l.batch, l.activation, l.delta);
|
||||||
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
|
backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
|
||||||
|
|
||||||
|
if(l.batch_normalize){
|
||||||
|
backward_batchnorm_layer(l, state);
|
||||||
|
}
|
||||||
|
|
||||||
for(i = 0; i < l.batch; ++i){
|
for(i = 0; i < l.batch; ++i){
|
||||||
float *a = l.delta + i*m*k;
|
float *a = l.delta + i*m*k;
|
||||||
float *b = state.workspace;
|
float *b = state.workspace;
|
||||||
|
@ -444,7 +444,6 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
|||||||
if(weightfile){
|
if(weightfile){
|
||||||
load_weights(&net, weightfile);
|
load_weights(&net, weightfile);
|
||||||
}
|
}
|
||||||
layer l = net.layers[net.n-1];
|
|
||||||
set_batch_network(&net, 1);
|
set_batch_network(&net, 1);
|
||||||
srand(2222222);
|
srand(2222222);
|
||||||
clock_t time;
|
clock_t time;
|
||||||
@ -452,9 +451,6 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
|||||||
char *input = buff;
|
char *input = buff;
|
||||||
int j;
|
int j;
|
||||||
float nms=.4;
|
float nms=.4;
|
||||||
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
|
||||||
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
|
||||||
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
|
||||||
while(1){
|
while(1){
|
||||||
if(filename){
|
if(filename){
|
||||||
strncpy(input, filename, 256);
|
strncpy(input, filename, 256);
|
||||||
@ -467,6 +463,12 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
|||||||
}
|
}
|
||||||
image im = load_image_color(input,0,0);
|
image im = load_image_color(input,0,0);
|
||||||
image sized = resize_image(im, net.w, net.h);
|
image sized = resize_image(im, net.w, net.h);
|
||||||
|
layer l = net.layers[net.n-1];
|
||||||
|
|
||||||
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
|
||||||
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
|
||||||
|
for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
|
||||||
|
|
||||||
float *X = sized.data;
|
float *X = sized.data;
|
||||||
time=clock();
|
time=clock();
|
||||||
network_predict(net, X);
|
network_predict(net, X);
|
||||||
@ -479,6 +481,8 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
|||||||
|
|
||||||
free_image(im);
|
free_image(im);
|
||||||
free_image(sized);
|
free_image(sized);
|
||||||
|
free(boxes);
|
||||||
|
free_ptrs((void **)probs, l.w*l.h*l.n);
|
||||||
#ifdef OPENCV
|
#ifdef OPENCV
|
||||||
cvWaitKey(0);
|
cvWaitKey(0);
|
||||||
cvDestroyAllWindows();
|
cvDestroyAllWindows();
|
||||||
|
29
src/image.c
29
src/image.c
@ -532,11 +532,8 @@ void save_image_jpg(image p, const char *name)
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void save_image(image im, const char *name)
|
void save_image_png(image im, const char *name)
|
||||||
{
|
{
|
||||||
#ifdef OPENCV
|
|
||||||
save_image_jpg(im, name);
|
|
||||||
#else
|
|
||||||
char buff[256];
|
char buff[256];
|
||||||
//sprintf(buff, "%s (%d)", name, windows);
|
//sprintf(buff, "%s (%d)", name, windows);
|
||||||
sprintf(buff, "%s.png", name);
|
sprintf(buff, "%s.png", name);
|
||||||
@ -550,6 +547,14 @@ void save_image(image im, const char *name)
|
|||||||
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
|
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
|
||||||
free(data);
|
free(data);
|
||||||
if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
|
if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
|
||||||
|
}
|
||||||
|
|
||||||
|
void save_image(image im, const char *name)
|
||||||
|
{
|
||||||
|
#ifdef OPENCV
|
||||||
|
save_image_jpg(im, name);
|
||||||
|
#else
|
||||||
|
save_image_png(im, name);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -748,6 +753,22 @@ void composite_3d(char *f1, char *f2, char *out, int delta)
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
image resize_max(image im, int max)
|
||||||
|
{
|
||||||
|
int w = im.w;
|
||||||
|
int h = im.h;
|
||||||
|
if(w > h){
|
||||||
|
h = (h * max) / w;
|
||||||
|
w = max;
|
||||||
|
} else {
|
||||||
|
w = (w * max) / h;
|
||||||
|
h = max;
|
||||||
|
}
|
||||||
|
if(w == im.w && h == im.h) return im;
|
||||||
|
image resized = resize_image(im, w, h);
|
||||||
|
return resized;
|
||||||
|
}
|
||||||
|
|
||||||
image resize_min(image im, int min)
|
image resize_min(image im, int min)
|
||||||
{
|
{
|
||||||
int w = im.w;
|
int w = im.w;
|
||||||
|
@ -31,6 +31,7 @@ image random_augment_image(image im, float angle, float aspect, int low, int hig
|
|||||||
void random_distort_image(image im, float hue, float saturation, float exposure);
|
void random_distort_image(image im, float hue, float saturation, float exposure);
|
||||||
image resize_image(image im, int w, int h);
|
image resize_image(image im, int w, int h);
|
||||||
image resize_min(image im, int min);
|
image resize_min(image im, int min);
|
||||||
|
image resize_max(image im, int max);
|
||||||
void translate_image(image m, float s);
|
void translate_image(image m, float s);
|
||||||
void normalize_image(image p);
|
void normalize_image(image p);
|
||||||
image rotate_image(image m, float rad);
|
image rotate_image(image m, float rad);
|
||||||
@ -55,6 +56,7 @@ image collapse_images_vert(image *ims, int n);
|
|||||||
|
|
||||||
void show_image(image p, const char *name);
|
void show_image(image p, const char *name);
|
||||||
void show_image_normalized(image im, const char *name);
|
void show_image_normalized(image im, const char *name);
|
||||||
|
void save_image_png(image im, const char *name);
|
||||||
void save_image(image p, const char *name);
|
void save_image(image p, const char *name);
|
||||||
void show_images(image *ims, int n, char *window);
|
void show_images(image *ims, int n, char *window);
|
||||||
void show_image_layers(image p, char *name);
|
void show_image_layers(image p, char *name);
|
||||||
|
@ -27,8 +27,8 @@ maxpool_layer make_maxpool_layer(int batch, int h, int w, int c, int size, int s
|
|||||||
l.w = w;
|
l.w = w;
|
||||||
l.c = c;
|
l.c = c;
|
||||||
l.pad = padding;
|
l.pad = padding;
|
||||||
l.out_w = (w + 2*padding - size + 1)/stride + 1;
|
l.out_w = (w + 2*padding)/stride;
|
||||||
l.out_h = (h + 2*padding - size + 1)/stride + 1;
|
l.out_h = (h + 2*padding)/stride;
|
||||||
l.out_c = c;
|
l.out_c = c;
|
||||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||||
l.inputs = h*w*c;
|
l.inputs = h*w*c;
|
||||||
@ -57,8 +57,8 @@ void resize_maxpool_layer(maxpool_layer *l, int w, int h)
|
|||||||
l->w = w;
|
l->w = w;
|
||||||
l->inputs = h*w*l->c;
|
l->inputs = h*w*l->c;
|
||||||
|
|
||||||
l->out_w = (w + 2*l->pad - l->size + 1)/l->stride + 1;
|
l->out_w = (w + 2*l->pad)/l->stride;
|
||||||
l->out_h = (h + 2*l->pad - l->size + 1)/l->stride + 1;
|
l->out_h = (h + 2*l->pad)/l->stride;
|
||||||
l->outputs = l->out_w * l->out_h * l->c;
|
l->outputs = l->out_w * l->out_h * l->c;
|
||||||
int output_size = l->outputs * l->batch;
|
int output_size = l->outputs * l->batch;
|
||||||
|
|
||||||
|
@ -9,8 +9,8 @@ extern "C" {
|
|||||||
|
|
||||||
__global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *input, float *output, int *indexes)
|
__global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *input, float *output, int *indexes)
|
||||||
{
|
{
|
||||||
int h = (in_h + 2*pad - size + 1)/stride + 1;
|
int h = (in_h + 2*pad)/stride;
|
||||||
int w = (in_w + 2*pad - size + 1)/stride + 1;
|
int w = (in_w + 2*pad)/stride;
|
||||||
int c = in_c;
|
int c = in_c;
|
||||||
|
|
||||||
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||||
@ -49,8 +49,8 @@ __global__ void forward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c
|
|||||||
|
|
||||||
__global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *delta, float *prev_delta, int *indexes)
|
__global__ void backward_maxpool_layer_kernel(int n, int in_h, int in_w, int in_c, int stride, int size, int pad, float *delta, float *prev_delta, int *indexes)
|
||||||
{
|
{
|
||||||
int h = (in_h + 2*pad - size + 1)/stride + 1;
|
int h = (in_h + 2*pad)/stride;
|
||||||
int w = (in_w + 2*pad - size + 1)/stride + 1;
|
int w = (in_w + 2*pad)/stride;
|
||||||
int c = in_c;
|
int c = in_c;
|
||||||
int area = (size-1)/stride;
|
int area = (size-1)/stride;
|
||||||
|
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
|
|
||||||
layer make_reorg_layer(int batch, int h, int w, int c, int stride, int reverse)
|
layer make_reorg_layer(int batch, int w, int h, int c, int stride, int reverse)
|
||||||
{
|
{
|
||||||
layer l = {0};
|
layer l = {0};
|
||||||
l.type = REORG;
|
l.type = REORG;
|
||||||
|
Loading…
Reference in New Issue
Block a user