mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fix training approach (convolutional layer)
This commit is contained in:
@ -457,7 +457,8 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
{
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
|
||||
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
if (!l.batch_normalize)
|
||||
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
|
||||
//#ifndef CUDNN_HALF
|
||||
//if(l.batch_normalize){
|
||||
@ -703,6 +704,45 @@ void push_convolutional_layer(convolutional_layer layer)
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay)
|
||||
{
|
||||
float learning_rate = learning_rate_init*l.learning_rate_scale;
|
||||
//float momentum = a.momentum;
|
||||
//float decay = a.decay;
|
||||
//int batch = a.batch;
|
||||
int size = l.size*l.size*l.c*l.n; // old
|
||||
|
||||
if (l.adam) {
|
||||
//adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t);
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, size, batch, l.t);
|
||||
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
if (l.scales_gpu) {
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
}
|
||||
}
|
||||
else {
|
||||
//axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
//axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
//scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(size, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(size, momentum, l.weight_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(l.n, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.n, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
if (l.scales_gpu) {
|
||||
axpy_ongpu(l.n, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
||||
scal_ongpu(l.n, momentum, l.scale_updates_gpu, 1);
|
||||
}
|
||||
}
|
||||
//if (l.clip) {
|
||||
// constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1);
|
||||
//}
|
||||
}
|
||||
|
||||
/*
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
@ -753,5 +793,5 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
|
||||
//-----------------------------------
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
@ -390,6 +390,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.adam = 1;
|
||||
l.m = calloc(c*n*size*size, sizeof(float));
|
||||
l.v = calloc(c*n*size*size, sizeof(float));
|
||||
l.bias_m = calloc(n, sizeof(float));
|
||||
l.scale_m = calloc(n, sizeof(float));
|
||||
l.bias_v = calloc(n, sizeof(float));
|
||||
l.scale_v = calloc(n, sizeof(float));
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
@ -401,6 +405,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
if (adam) {
|
||||
l.m_gpu = cuda_make_array(l.m, c*n*size*size);
|
||||
l.v_gpu = cuda_make_array(l.v, c*n*size*size);
|
||||
l.bias_m_gpu = cuda_make_array(l.bias_m, n);
|
||||
l.bias_v_gpu = cuda_make_array(l.bias_v, n);
|
||||
l.scale_m_gpu = cuda_make_array(l.scale_m, n);
|
||||
l.scale_v_gpu = cuda_make_array(l.scale_v, n);
|
||||
}
|
||||
|
||||
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size);
|
||||
|
22
src/layer.h
22
src/layer.h
@ -100,6 +100,7 @@ struct layer{
|
||||
float exposure;
|
||||
float shift;
|
||||
float ratio;
|
||||
float learning_rate_scale;
|
||||
int focal_loss;
|
||||
int noloss;
|
||||
int softmax;
|
||||
@ -122,11 +123,14 @@ struct layer{
|
||||
float B1;
|
||||
float B2;
|
||||
float eps;
|
||||
float *m_gpu;
|
||||
float *v_gpu;
|
||||
|
||||
int t;
|
||||
float *m;
|
||||
float *v;
|
||||
float * bias_m;
|
||||
float * bias_v;
|
||||
float * scale_m;
|
||||
float * scale_v;
|
||||
|
||||
tree *softmax_tree;
|
||||
int *map;
|
||||
@ -245,7 +249,7 @@ struct layer{
|
||||
|
||||
size_t workspace_size;
|
||||
|
||||
#ifdef GPU
|
||||
#ifdef GPU
|
||||
float *z_gpu;
|
||||
float *r_gpu;
|
||||
float *h_gpu;
|
||||
@ -263,6 +267,14 @@ struct layer{
|
||||
float * concat_gpu;
|
||||
float * concat_delta_gpu;
|
||||
|
||||
// adam
|
||||
float *m_gpu;
|
||||
float *v_gpu;
|
||||
float *bias_m_gpu;
|
||||
float *scale_m_gpu;
|
||||
float *bias_v_gpu;
|
||||
float *scale_v_gpu;
|
||||
|
||||
float *binary_input_gpu;
|
||||
float *binary_weights_gpu;
|
||||
|
||||
@ -310,8 +322,8 @@ struct layer{
|
||||
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
|
||||
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
|
||||
cudnnPoolingDescriptor_t poolingDesc;
|
||||
#endif
|
||||
#endif
|
||||
#endif // CUDNN
|
||||
#endif // GPU
|
||||
};
|
||||
|
||||
void free_layer(layer);
|
||||
|
@ -805,6 +805,7 @@ network parse_network_cfg_custom(char *filename, int batch)
|
||||
l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
|
||||
l.dontload = option_find_int_quiet(options, "dontload", 0);
|
||||
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
|
||||
l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
|
||||
option_unused(options);
|
||||
net.layers[count] = l;
|
||||
if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
||||
|
Reference in New Issue
Block a user