mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fix training approach (convolutional layer)
This commit is contained in:
@ -457,7 +457,8 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
{
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
|
||||
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
if (!l.batch_normalize)
|
||||
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
|
||||
//#ifndef CUDNN_HALF
|
||||
//if(l.batch_normalize){
|
||||
@ -703,6 +704,45 @@ void push_convolutional_layer(convolutional_layer layer)
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay)
|
||||
{
|
||||
float learning_rate = learning_rate_init*l.learning_rate_scale;
|
||||
//float momentum = a.momentum;
|
||||
//float decay = a.decay;
|
||||
//int batch = a.batch;
|
||||
int size = l.size*l.size*l.c*l.n; // old
|
||||
|
||||
if (l.adam) {
|
||||
//adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t);
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, size, batch, l.t);
|
||||
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
if (l.scales_gpu) {
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
}
|
||||
}
|
||||
else {
|
||||
//axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
//axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
//scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(size, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(size, momentum, l.weight_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(l.n, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.n, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
if (l.scales_gpu) {
|
||||
axpy_ongpu(l.n, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
||||
scal_ongpu(l.n, momentum, l.scale_updates_gpu, 1);
|
||||
}
|
||||
}
|
||||
//if (l.clip) {
|
||||
// constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1);
|
||||
//}
|
||||
}
|
||||
|
||||
/*
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
@ -753,5 +793,5 @@ void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float
|
||||
//-----------------------------------
|
||||
}
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
|
Reference in New Issue
Block a user