mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
fast sort of working
This commit is contained in:
parent
08b757a0bf
commit
6e1d5b45de
22
src/cnn.c
22
src/cnn.c
@ -210,10 +210,10 @@ void train_imagenet(char *cfgfile)
|
||||
//network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
|
||||
srand(time(0));
|
||||
network net = parse_network_cfg(cfgfile);
|
||||
set_learning_network(&net, net.learning_rate, 0, net.decay);
|
||||
set_learning_network(&net, net.learning_rate*10., net.momentum, net.decay);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1024;
|
||||
int i = 0;
|
||||
int i = 6600;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -228,9 +228,9 @@ void train_imagenet(char *cfgfile)
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
//normalize_data_rows(train);
|
||||
translate_data_rows(train, -128);
|
||||
scale_data_rows(train, 1./128);
|
||||
normalize_data_rows(train);
|
||||
//translate_data_rows(train, -128);
|
||||
//scale_data_rows(train, 1./128);
|
||||
load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
@ -539,12 +539,14 @@ void visualize_cat()
|
||||
|
||||
void test_correct_nist()
|
||||
{
|
||||
network net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
test_learn_bias(*(convolutional_layer *)net.layers[0]);
|
||||
srand(222222);
|
||||
network net = parse_network_cfg("cfg/nist.cfg");
|
||||
net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
||||
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
||||
translate_data_rows(train, -144);
|
||||
translate_data_rows(test, -144);
|
||||
normalize_data_rows(train);
|
||||
normalize_data_rows(test);
|
||||
int count = 0;
|
||||
int iters = 1000/net.batch;
|
||||
|
||||
@ -555,11 +557,12 @@ void test_correct_nist()
|
||||
float test_acc = network_accuracy(net, test);
|
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
save_network(net, "cfg/nist_gpu.cfg");
|
||||
|
||||
gpu_index = -1;
|
||||
count = 0;
|
||||
srand(222222);
|
||||
net = parse_network_cfg("cfg/nist.cfg");
|
||||
net = parse_network_cfg("cfg/nist_conv.cfg");
|
||||
while(++count <= 5){
|
||||
clock_t start = clock(), end;
|
||||
float loss = train_network_sgd(net, train, iters);
|
||||
@ -567,6 +570,7 @@ void test_correct_nist()
|
||||
float test_acc = network_accuracy(net, test);
|
||||
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
||||
}
|
||||
save_network(net, "cfg/nist_cpu.cfg");
|
||||
}
|
||||
|
||||
void test_correct_alexnet()
|
||||
|
@ -305,6 +305,27 @@ void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void test_learn_bias(convolutional_layer l)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(l) * convolutional_out_width(l);
|
||||
for(i = 0; i < size*l.batch*l.n; ++i){
|
||||
l.delta[i] = rand_uniform();
|
||||
}
|
||||
for(i = 0; i < l.n; ++i){
|
||||
l.bias_updates[i] = rand_uniform();
|
||||
}
|
||||
cl_write_array(l.delta_cl, l.delta, size*l.batch*l.n);
|
||||
cl_write_array(l.bias_updates_cl, l.bias_updates, l.n);
|
||||
float *gpu = calloc(l.n, sizeof(float));
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
learn_bias_convolutional_layer_ongpu(l);
|
||||
learn_bias_convolutional_layer(l);
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
}
|
||||
|
||||
cl_kernel get_convolutional_bias_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
|
@ -19,7 +19,7 @@ __kernel void learn_bias(int batch, int n, int size, __global float *delta, __gl
|
||||
for(b = 0; b < batch; ++b){
|
||||
for(i = 0; i < size; i += BLOCK){
|
||||
int index = p + i + size*(filter + n*b);
|
||||
sum += (index < size) ? delta[index] : 0;
|
||||
sum += (p+i < size) ? delta[index] : 0;
|
||||
}
|
||||
}
|
||||
part[p] = sum;
|
||||
|
154
src/gemm.c
154
src/gemm.c
@ -162,6 +162,26 @@ cl_kernel get_gemm_nn_kernel()
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
#define TILE 64
|
||||
#define TILE_K 16
|
||||
#define WPT 8
|
||||
#define THREADS (TILE*TILE)/(WPT*WPT)
|
||||
|
||||
cl_kernel get_gemm_nn_fast_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel gemm_kernel;
|
||||
if(!init){
|
||||
gemm_kernel = get_kernel("src/gemm_fast.cl", "gemm_nn_fast", "-D TILE=" STR(TILE)
|
||||
" -cl-nv-verbose "
|
||||
" -D TILE_K=" STR(TILE_K)
|
||||
" -D WPT=" STR(WPT)
|
||||
" -D THREADS=" STR(THREADS));
|
||||
init = 1;
|
||||
}
|
||||
return gemm_kernel;
|
||||
}
|
||||
|
||||
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int lda,
|
||||
cl_mem B_gpu, int ldb,
|
||||
@ -171,6 +191,45 @@ void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc);
|
||||
}
|
||||
|
||||
void gemm_ongpu_fast(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int lda,
|
||||
cl_mem B_gpu, int ldb,
|
||||
float BETA,
|
||||
cl_mem C_gpu, int ldc)
|
||||
{
|
||||
int a_off = 0;
|
||||
int b_off = 0;
|
||||
int c_off = 0;
|
||||
//printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K);
|
||||
cl_kernel gemm_kernel = get_gemm_nn_fast_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off);
|
||||
cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {THREADS*((N-1)/TILE + 1), (M-1)/TILE + 1};
|
||||
const size_t local_size[] = {THREADS, 1};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
cl_mem A_gpu, int a_off, int lda,
|
||||
cl_mem B_gpu, int b_off, int ldb,
|
||||
@ -214,7 +273,7 @@ void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
@ -244,7 +303,9 @@ void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
size, C, &cl.error);
|
||||
check_error(cl);
|
||||
|
||||
gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
// TODO
|
||||
//gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
gemm_ongpu_fast(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
||||
|
||||
clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0);
|
||||
check_error(cl);
|
||||
@ -303,7 +364,7 @@ void time_ongpu(int TA, int TB, int m, int k, int n)
|
||||
for(i = 0; i<iter; ++i){
|
||||
gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
||||
}
|
||||
double flop = m*n*k*iter;
|
||||
double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
||||
double gflop = flop/pow(10., 9);
|
||||
end = clock();
|
||||
double seconds = sec(end-start);
|
||||
@ -316,6 +377,39 @@ void time_ongpu(int TA, int TB, int m, int k, int n)
|
||||
free(c);
|
||||
}
|
||||
|
||||
void time_ongpu_fast(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
int iter = 10;
|
||||
float *a = random_matrix(m,k);
|
||||
float *b = random_matrix(k,n);
|
||||
|
||||
int lda = (!TA)?k:m;
|
||||
int ldb = (!TB)?n:k;
|
||||
|
||||
float *c = random_matrix(m,n);
|
||||
|
||||
cl_mem a_cl = cl_make_array(a, m*k);
|
||||
cl_mem b_cl = cl_make_array(b, k*n);
|
||||
cl_mem c_cl = cl_make_array(c, m*n);
|
||||
|
||||
int i;
|
||||
clock_t start = clock(), end;
|
||||
for(i = 0; i<iter; ++i){
|
||||
gemm_ongpu_fast(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
||||
}
|
||||
double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
||||
double gflop = flop/pow(10., 9);
|
||||
end = clock();
|
||||
double seconds = sec(end-start);
|
||||
printf("Fast Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
|
||||
clReleaseMemObject(a_cl);
|
||||
clReleaseMemObject(b_cl);
|
||||
clReleaseMemObject(c_cl);
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
{
|
||||
srand(0);
|
||||
@ -335,8 +429,10 @@ void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
||||
int i;
|
||||
//pm(m,k,b);
|
||||
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
||||
//printf("GPU\n");
|
||||
//pm(m, n, c_gpu);
|
||||
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
||||
//printf("\n\nCPU\n");
|
||||
//pm(m, n, c);
|
||||
double sse = 0;
|
||||
for(i = 0; i < m*n; ++i) {
|
||||
@ -365,21 +461,47 @@ void test_gpu_blas()
|
||||
test_gpu_accuracy(0,1,1000,10,100);
|
||||
test_gpu_accuracy(1,1,1000,10,100);
|
||||
*/
|
||||
time_ongpu(0,0,512,256,1152);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
time_ongpu(0,0,128,1200,4096);
|
||||
|
||||
time_ongpu(0,1,128,1200,4096);
|
||||
time_ongpu(1,0,1200,4096,128);
|
||||
time_ongpu(1,0,4096,1200,128);
|
||||
time_ongpu(1,0,1200,128,4096);
|
||||
test_gpu_accuracy(0,0,128,128,128);
|
||||
|
||||
test_gpu_accuracy(0,0,512,256,1152);
|
||||
test_gpu_accuracy(0,0,131,4093,1199);
|
||||
test_gpu_accuracy(0,1,131,4093,1199);
|
||||
test_gpu_accuracy(1,0,131,4093,1199);
|
||||
test_gpu_accuracy(1,1,131,4093,1199);
|
||||
/*
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,64,2916,363);
|
||||
time_ongpu_fast(0,0,64,2916,363);
|
||||
time_ongpu(0,0,192,729,1600);
|
||||
time_ongpu_fast(0,0,192,729,1600);
|
||||
time_ongpu(0,0,384,196,1728);
|
||||
time_ongpu_fast(0,0,384,196,1728);
|
||||
time_ongpu(0,0,256,196,3456);
|
||||
time_ongpu_fast(0,0,256,196,3456);
|
||||
time_ongpu(0,0,256,196,2304);
|
||||
time_ongpu_fast(0,0,256,196,2304);
|
||||
time_ongpu(0,0,128,4096,12544);
|
||||
time_ongpu_fast(0,0,128,4096,12544);
|
||||
time_ongpu(0,0,128,4096,4096);
|
||||
time_ongpu_fast(0,0,128,4096,4096);
|
||||
*/
|
||||
// time_ongpu(1,0,2304,196,256);
|
||||
// time_ongpu_fast(1,0,2304,196,256);
|
||||
// time_ongpu(0,1,256,2304,196);
|
||||
// time_ongpu_fast(0,1,256,2304,196);
|
||||
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
time_ongpu(0,0,2048,2048,2048);
|
||||
time_ongpu_fast(0,0,2048,2048,2048);
|
||||
|
||||
/*
|
||||
test_gpu_accuracy(0,0,131,4093,1199);
|
||||
test_gpu_accuracy(0,1,131,4093,1199);
|
||||
test_gpu_accuracy(1,0,131,4093,1199);
|
||||
test_gpu_accuracy(1,1,131,4093,1199);
|
||||
*/
|
||||
/*
|
||||
|
||||
time_ongpu(0,0,1024,1024,1024);
|
||||
|
@ -215,4 +215,3 @@ __kernel void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
C[row*ldc+col] = ALPHA*val + BETA*C[row*ldc+col];
|
||||
}
|
||||
}
|
||||
|
||||
|
79
src/gemm_fast.cl
Normal file
79
src/gemm_fast.cl
Normal file
@ -0,0 +1,79 @@
|
||||
|
||||
__kernel void gemm_nn_fast(int TA, int TB, int M, int N, int K, float ALPHA,
|
||||
__global float *A, int a_off, int lda,
|
||||
__global float *B, int b_off, int ldb,
|
||||
float BETA,
|
||||
__global float *C, int c_off, int ldc)
|
||||
{
|
||||
int i, j, k, x, y;
|
||||
A += a_off;
|
||||
B += b_off;
|
||||
C += c_off;
|
||||
|
||||
__local float Asub[TILE] [TILE_K];
|
||||
__local float Bsub[TILE_K][TILE];
|
||||
|
||||
int ctile = get_group_id(0);
|
||||
int rtile = get_group_id(1);
|
||||
|
||||
float Breg;
|
||||
float Areg[WPT];
|
||||
float acc[WPT][WPT];
|
||||
|
||||
A += rtile*TILE*lda;
|
||||
B += ctile*TILE;
|
||||
C += rtile*TILE*ldc + ctile*TILE;
|
||||
|
||||
for(i = 0; i < WPT; ++i){
|
||||
for(j = 0; j < WPT; ++j){
|
||||
acc[i][j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
int offset = get_local_id(0);
|
||||
|
||||
for(i = 0; i < K; i += TILE_K){
|
||||
for(j = 0; j < TILE*TILE_K; j += THREADS){
|
||||
int index = j+offset;
|
||||
|
||||
int row = index / TILE_K;
|
||||
int col = index % TILE_K;
|
||||
Asub[row][col] = A[row*lda + col];
|
||||
|
||||
row = index / TILE;
|
||||
col = index % TILE;
|
||||
Bsub[row][col] = B[row*ldb + col];
|
||||
}
|
||||
|
||||
A += TILE_K;
|
||||
B += TILE_K*ldb;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
for(k = 0; k < TILE_K; ++k){
|
||||
for(y = 0; y < WPT; ++y){
|
||||
int row = (offset + (y*WPT)*THREADS)/TILE;
|
||||
//Areg[y] = Asub[y*WPT][k];
|
||||
}
|
||||
for(y = 0; y < WPT; ++y){
|
||||
for(x = 0; x < WPT; ++x){
|
||||
int index = offset + (y*WPT + x)*THREADS;
|
||||
int row = index / TILE;
|
||||
int col = index % TILE;
|
||||
acc[y][x] += Asub[row][k]*Bsub[k][col];
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
for(y = 0; y < WPT; ++y){
|
||||
for(x = 0; x < WPT; ++x){
|
||||
int index = offset + (y*WPT + x)*THREADS;
|
||||
int row = index / TILE;
|
||||
int col = index % TILE;
|
||||
C[row*ldc+col] = ALPHA*acc[y][x] + BETA*C[row*ldc+col];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -132,11 +132,11 @@ cl_program cl_fprog(char *filename, char *options, cl_info info)
|
||||
char build_c[1024*64];
|
||||
// and compile it (after this we could extract the compiled version)
|
||||
info.error=clBuildProgram(prog, 0, 0, options, 0, 0);
|
||||
if ( info.error != CL_SUCCESS ) {
|
||||
//if ( info.error != CL_SUCCESS ) {
|
||||
fprintf(stderr, "Error Building Program: %d\n", info.error);
|
||||
clGetProgramBuildInfo( prog, info.device, CL_PROGRAM_BUILD_LOG, 1024*64, build_c, 0);
|
||||
fprintf(stderr, "Build Log for %s program:\n%s\n", filename, build_c);
|
||||
}
|
||||
//}
|
||||
check_error(info);
|
||||
return prog;
|
||||
}
|
||||
@ -205,7 +205,7 @@ cl_mem cl_make_array(float *x, int n)
|
||||
CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
|
||||
sizeof(float)*n, x, &cl.error);
|
||||
check_error(cl);
|
||||
activate_array_ongpu(mem, n, LINEAR);
|
||||
//activate_array_ongpu(mem, n, LINEAR);
|
||||
return mem;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user