mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added batch to col2im, padding option
This commit is contained in:
112
src/network.c
112
src/network.c
@ -113,10 +113,9 @@ void save_network(network net, char *filename)
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void forward_network(network net, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
#ifdef GPU
|
||||
cl_setup();
|
||||
size_t size = get_network_input_size(net);
|
||||
if(!net.input_cl){
|
||||
@ -126,16 +125,12 @@ void forward_network(network net, float *input, int train)
|
||||
}
|
||||
cl_write_array(net.input_cl, input, size);
|
||||
cl_mem input_cl = net.input_cl;
|
||||
#endif
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
#ifdef GPU
|
||||
forward_convolutional_layer_gpu(layer, input_cl);
|
||||
input_cl = layer.output_cl;
|
||||
#else
|
||||
forward_convolutional_layer(layer, input);
|
||||
#endif
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
@ -161,6 +156,41 @@ void forward_network(network net, float *input, int train)
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void forward_network(network net, float *input, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer(layer, input, train);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
forward_maxpool_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
normalization_layer layer = *(normalization_layer *)net.layers[i];
|
||||
forward_normalization_layer(layer, input);
|
||||
input = layer.output;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void update_network(network net, float step, float momentum, float decay)
|
||||
{
|
||||
int i;
|
||||
@ -238,9 +268,10 @@ float calculate_error_network(network net, float *truth)
|
||||
float sum = 0;
|
||||
float *delta = get_network_delta(net);
|
||||
float *out = get_network_output(net);
|
||||
int i, k = get_network_output_size(net);
|
||||
for(i = 0; i < k; ++i){
|
||||
//printf("%f, ", out[i]);
|
||||
int i;
|
||||
for(i = 0; i < get_network_output_size(net)*net.batch; ++i){
|
||||
//if(i %get_network_output_size(net) == 0) printf("\n");
|
||||
//printf("%5.2f %5.2f, ", out[i], truth[i]);
|
||||
delta[i] = truth[i] - out[i];
|
||||
sum += delta[i]*delta[i];
|
||||
}
|
||||
@ -305,20 +336,38 @@ float train_network_datum(network net, float *x, float *y, float step, float mom
|
||||
|
||||
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
int i;
|
||||
float error = 0;
|
||||
int correct = 0;
|
||||
int pos = 0;
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i,j;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
int index = rand()%d.X.rows;
|
||||
float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
|
||||
for(j = 0; j < batch; ++j){
|
||||
int index = rand()%d.X.rows;
|
||||
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
||||
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
||||
}
|
||||
float err = train_network_datum(net, X, y, step, momentum, decay);
|
||||
sum += err;
|
||||
//train_network_datum(net, X, y, step, momentum, decay);
|
||||
/*
|
||||
float *y = d.y.vals[index];
|
||||
int class = get_predicted_class_network(net);
|
||||
correct += (y[class]?1:0);
|
||||
if(y[1]){
|
||||
error += err;
|
||||
++pos;
|
||||
*/
|
||||
|
||||
/*
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", y[j]);
|
||||
}
|
||||
printf("\n");
|
||||
for(j = 0; j < d.y.cols*batch; ++j){
|
||||
printf("%6.3f ", get_network_output(net)[j]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("\n");
|
||||
*/
|
||||
|
||||
|
||||
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
|
||||
@ -327,7 +376,9 @@ float train_network_sgd(network net, data d, int n, float step, float momentum,f
|
||||
//}
|
||||
}
|
||||
//printf("Accuracy: %f\n",(float) correct/n);
|
||||
return error/pos;
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
|
||||
{
|
||||
@ -448,7 +499,7 @@ int get_network_output_size(network net)
|
||||
|
||||
int get_network_input_size(network net)
|
||||
{
|
||||
return get_network_output_size_layer(net, 0);
|
||||
return get_network_input_size_layer(net, 0);
|
||||
}
|
||||
|
||||
image get_network_image_layer(network net, int i)
|
||||
@ -505,15 +556,24 @@ float *network_predict(network net, float *input)
|
||||
|
||||
matrix network_predict_data(network net, data test)
|
||||
{
|
||||
int i,j;
|
||||
int i,j,b;
|
||||
int k = get_network_output_size(net);
|
||||
matrix pred = make_matrix(test.X.rows, k);
|
||||
for(i = 0; i < test.X.rows; ++i){
|
||||
float *out = network_predict(net, test.X.vals[i]);
|
||||
for(j = 0; j < k; ++j){
|
||||
pred.vals[i][j] = out[j];
|
||||
float *X = calloc(net.batch*test.X.rows, sizeof(float));
|
||||
for(i = 0; i < test.X.rows; i += net.batch){
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
||||
}
|
||||
float *out = network_predict(net, X);
|
||||
for(b = 0; b < net.batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
for(j = 0; j < k; ++j){
|
||||
pred.vals[i+b][j] = out[j+b*k];
|
||||
}
|
||||
}
|
||||
}
|
||||
free(X);
|
||||
return pred;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user