mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Show IoU, save anchors to file.Show anchors in the window if used -show
This commit is contained in:
@ -4,5 +4,9 @@ rem # How to calculate Yolo v2 anchors using K-means++
|
||||
darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13
|
||||
|
||||
|
||||
rem darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13 -show
|
||||
|
||||
|
||||
|
||||
|
||||
pause
|
||||
|
105
src/detector.c
105
src/detector.c
@ -807,7 +807,7 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
|
||||
}
|
||||
|
||||
#ifdef OPENCV
|
||||
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height)
|
||||
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show)
|
||||
{
|
||||
printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
|
||||
|
||||
@ -846,7 +846,6 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
|
||||
}
|
||||
printf("\n all loaded. \n");
|
||||
|
||||
//int number_of_boxes = 10;
|
||||
CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
|
||||
CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
|
||||
CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
|
||||
@ -859,7 +858,7 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
|
||||
}
|
||||
|
||||
|
||||
const int attemps = 1000;
|
||||
const int attemps = 10;
|
||||
double compactness;
|
||||
|
||||
enum {
|
||||
@ -871,19 +870,102 @@ void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final
|
||||
printf("\n calculating k-means++ ...");
|
||||
// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
|
||||
cvKMeans2(points, num_of_clusters, labels,
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 1000, 0), attemps,
|
||||
0, KMEANS_RANDOM_CENTERS,
|
||||
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps,
|
||||
0, KMEANS_PP_CENTERS,
|
||||
centers, &compactness);
|
||||
|
||||
//orig 2.0 anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
|
||||
//float orig_anch[] = { 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 };
|
||||
// worse than ours (even for 19x19 final size - for input size 608x608)
|
||||
|
||||
printf("\n");
|
||||
printf("anchors = ");
|
||||
for (i = 0; i < num_of_clusters; ++i) {
|
||||
printf("%2.2f,%2.2f, ", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
|
||||
}
|
||||
//orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071
|
||||
//float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 };
|
||||
// orig (IoU=59.90%) better than ours (59.75%)
|
||||
|
||||
//gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66
|
||||
//float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 };
|
||||
|
||||
// ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595
|
||||
//float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 };
|
||||
//for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i];
|
||||
|
||||
//for (i = 0; i < number_of_boxes; ++i)
|
||||
// printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
|
||||
|
||||
float avg_iou = 0;
|
||||
for (i = 0; i < number_of_boxes; ++i) {
|
||||
float box_w = points->data.fl[i * 2];
|
||||
float box_h = points->data.fl[i * 2 + 1];
|
||||
//int cluster_idx = labels->data.i[i];
|
||||
int cluster_idx = 0;
|
||||
float min_dist = 1000000;
|
||||
for (j = 0; j < num_of_clusters; ++j) {
|
||||
float anchor_w = centers->data.fl[j * 2];
|
||||
float anchor_h = centers->data.fl[j * 2 + 1];
|
||||
float w_diff = anchor_w - box_w;
|
||||
float h_diff = anchor_h - box_h;
|
||||
float distance = sqrt(w_diff*w_diff + h_diff*h_diff);
|
||||
if (distance < min_dist) min_dist = distance, cluster_idx = j;
|
||||
}
|
||||
|
||||
float anchor_w = centers->data.fl[cluster_idx * 2];
|
||||
float anchor_h = centers->data.fl[cluster_idx * 2 + 1];
|
||||
float min_w = (box_w < anchor_w) ? box_w : anchor_w;
|
||||
float min_h = (box_h < anchor_h) ? box_h : anchor_h;
|
||||
float box_intersect = min_w*min_h;
|
||||
float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect;
|
||||
float iou = box_intersect / box_union;
|
||||
if (iou > 1 || iou < 0) {
|
||||
printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n",
|
||||
i, box_w, box_h, anchor_w, anchor_h, iou);
|
||||
}
|
||||
else avg_iou += iou;
|
||||
}
|
||||
avg_iou = 100 * avg_iou / number_of_boxes;
|
||||
printf("\n avg IoU = %2.2f %% \n", avg_iou);
|
||||
|
||||
char buff[1024];
|
||||
FILE* fw = fopen("anchors.txt", "wb");
|
||||
printf("\nSaving anchors to the file: anchors.txt \n");
|
||||
printf("anchors = ");
|
||||
for (i = 0; i < num_of_clusters; ++i) {
|
||||
sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
|
||||
printf("%s, ", buff);
|
||||
fwrite(buff, sizeof(char), strlen(buff), fw);
|
||||
if (i + 1 < num_of_clusters) fwrite(", ", sizeof(char), 2, fw);;
|
||||
}
|
||||
printf("\n");
|
||||
fclose(fw);
|
||||
|
||||
if (show) {
|
||||
size_t img_size = 700;
|
||||
IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3);
|
||||
cvZero(img);
|
||||
for (j = 0; j < num_of_clusters; ++j) {
|
||||
CvPoint pt1, pt2;
|
||||
pt1.x = pt1.y = 0;
|
||||
pt2.x = centers->data.fl[j * 2] * img_size / final_width;
|
||||
pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height;
|
||||
cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0);
|
||||
}
|
||||
|
||||
for (i = 0; i < number_of_boxes; ++i) {
|
||||
CvPoint pt;
|
||||
pt.x = points->data.fl[i * 2] * img_size / final_width;
|
||||
pt.y = points->data.fl[i * 2 + 1] * img_size / final_height;
|
||||
int cluster_idx = labels->data.i[i];
|
||||
int red_id = (cluster_idx * (uint64_t)123 + 55) % 255;
|
||||
int green_id = (cluster_idx * (uint64_t)321 + 33) % 255;
|
||||
int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255;
|
||||
cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0);
|
||||
//if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y);
|
||||
}
|
||||
cvShowImage("clusters", img);
|
||||
cvWaitKey(0);
|
||||
cvReleaseImage(&img);
|
||||
cvDestroyAllWindows();
|
||||
}
|
||||
|
||||
free(rel_width_height_array);
|
||||
cvReleaseMat(&points);
|
||||
cvReleaseMat(¢ers);
|
||||
@ -961,6 +1043,7 @@ void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filenam
|
||||
void run_detector(int argc, char **argv)
|
||||
{
|
||||
int dont_show = find_arg(argc, argv, "-dont_show");
|
||||
int show = find_arg(argc, argv, "-show");
|
||||
int http_stream_port = find_int_arg(argc, argv, "-http_port", -1);
|
||||
char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
|
||||
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
|
||||
@ -1010,7 +1093,7 @@ void run_detector(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
|
||||
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh);
|
||||
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show);
|
||||
else if(0==strcmp(argv[2], "demo")) {
|
||||
list *options = read_data_cfg(datacfg);
|
||||
int classes = option_find_int(options, "classes", 20);
|
||||
|
Reference in New Issue
Block a user