mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
CUDA so fast
This commit is contained in:
@@ -1,6 +1,9 @@
|
||||
#include "convolutional_layer.h"
|
||||
#include "utils.h"
|
||||
#include "mini_blas.h"
|
||||
#include "im2col.h"
|
||||
#include "col2im.h"
|
||||
#include "blas.h"
|
||||
#include "gemm.h"
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
@@ -77,15 +80,15 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
|
||||
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
||||
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
||||
|
||||
layer->biases_cl = cl_make_array(layer->biases, n);
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
||||
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
#endif
|
||||
layer->activation = activation;
|
||||
|
||||
@@ -140,7 +143,6 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
@@ -265,183 +267,3 @@ image *visualize_convolutional_layer(convolutional_layer layer, char *window, im
|
||||
return single_filters;
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
#define BLOCK 32
|
||||
|
||||
#define STR_HELPER(x) #x
|
||||
#define STR(x) STR_HELPER(x)
|
||||
|
||||
|
||||
cl_kernel get_convolutional_learn_bias_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK));
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
|
||||
{
|
||||
int size = convolutional_out_height(layer) * convolutional_out_width(layer);
|
||||
|
||||
cl_kernel kernel = get_convolutional_learn_bias_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.n*BLOCK};
|
||||
const size_t local_size[] = {BLOCK};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
void test_learn_bias(convolutional_layer l)
|
||||
{
|
||||
int i;
|
||||
int size = convolutional_out_height(l) * convolutional_out_width(l);
|
||||
for(i = 0; i < size*l.batch*l.n; ++i){
|
||||
l.delta[i] = rand_uniform();
|
||||
}
|
||||
for(i = 0; i < l.n; ++i){
|
||||
l.bias_updates[i] = rand_uniform();
|
||||
}
|
||||
cl_write_array(l.delta_cl, l.delta, size*l.batch*l.n);
|
||||
cl_write_array(l.bias_updates_cl, l.bias_updates, l.n);
|
||||
float *gpu = calloc(l.n, sizeof(float));
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
learn_bias_convolutional_layer_ongpu(l);
|
||||
learn_bias_convolutional_layer(l);
|
||||
cl_read_array(l.bias_updates_cl, gpu, l.n);
|
||||
for(i = 0; i < l.n; ++i) printf("%.9g %.9g\n", l.bias_updates[i], gpu[i]);
|
||||
}
|
||||
|
||||
cl_kernel get_convolutional_bias_kernel()
|
||||
{
|
||||
static int init = 0;
|
||||
static cl_kernel kernel;
|
||||
if(!init){
|
||||
kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK));
|
||||
init = 1;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
void bias_output_gpu(const convolutional_layer layer)
|
||||
{
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
int size = out_h*out_w;
|
||||
|
||||
cl_kernel kernel = get_convolutional_bias_kernel();
|
||||
cl_command_queue queue = cl.queue;
|
||||
|
||||
cl_uint i = 0;
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
|
||||
cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
|
||||
check_error(cl);
|
||||
|
||||
const size_t global_size[] = {layer.n*size, layer.batch};
|
||||
|
||||
cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
|
||||
check_error(cl);
|
||||
}
|
||||
|
||||
//#define TIMEIT
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
|
||||
bias_output_gpu(layer);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.output_cl;
|
||||
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
|
||||
}
|
||||
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
|
||||
learn_bias_convolutional_layer_ongpu(layer);
|
||||
|
||||
if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem a = layer.delta_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.filter_updates_cl;
|
||||
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
|
||||
|
||||
if(delta_cl){
|
||||
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.delta_cl;
|
||||
cl_mem c = layer.col_image_cl;
|
||||
|
||||
gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
|
||||
|
||||
col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pull_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
{
|
||||
cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.biases_cl, layer.biases, layer.n);
|
||||
cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
|
||||
cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer)
|
||||
{
|
||||
int size = layer.size*layer.size*layer.c*layer.n;
|
||||
axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
|
||||
scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
|
||||
|
||||
axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
|
||||
axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
|
||||
scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
|
||||
//pull_convolutional_layer(layer);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
Reference in New Issue
Block a user