mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
🔥 🐛 🔥
This commit is contained in:
@ -112,6 +112,26 @@ void operations(char *cfgfile)
|
||||
ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
|
||||
} else if(l.type == CONNECTED){
|
||||
ops += 2l * l.inputs * l.outputs;
|
||||
} else if (l.type == RNN){
|
||||
ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
|
||||
ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
|
||||
ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
|
||||
} else if (l.type == GRU){
|
||||
ops += 2l * l.uz->inputs * l.uz->outputs;
|
||||
ops += 2l * l.uh->inputs * l.uh->outputs;
|
||||
ops += 2l * l.ur->inputs * l.ur->outputs;
|
||||
ops += 2l * l.wz->inputs * l.wz->outputs;
|
||||
ops += 2l * l.wh->inputs * l.wh->outputs;
|
||||
ops += 2l * l.wr->inputs * l.wr->outputs;
|
||||
} else if (l.type == LSTM){
|
||||
ops += 2l * l.uf->inputs * l.uf->outputs;
|
||||
ops += 2l * l.ui->inputs * l.ui->outputs;
|
||||
ops += 2l * l.ug->inputs * l.ug->outputs;
|
||||
ops += 2l * l.uo->inputs * l.uo->outputs;
|
||||
ops += 2l * l.wf->inputs * l.wf->outputs;
|
||||
ops += 2l * l.wi->inputs * l.wi->outputs;
|
||||
ops += 2l * l.wg->inputs * l.wg->outputs;
|
||||
ops += 2l * l.wo->inputs * l.wo->outputs;
|
||||
}
|
||||
}
|
||||
printf("Floating Point Operations: %ld\n", ops);
|
||||
|
@ -64,7 +64,7 @@ void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg
|
||||
|
||||
int ax_size = anet.inputs*anet.batch;
|
||||
int ay_size = anet.truths*anet.batch;
|
||||
fill_ongpu(ay_size, .9, anet.truth_gpu, 1);
|
||||
fill_gpu(ay_size, .9, anet.truth_gpu, 1);
|
||||
anet.delta_gpu = cuda_make_array(0, ax_size);
|
||||
anet.train = 1;
|
||||
|
||||
@ -102,36 +102,36 @@ void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg
|
||||
|
||||
forward_network_gpu(fnet, fstate);
|
||||
float *feats = fnet.layers[fnet.n - 2].output_gpu;
|
||||
copy_ongpu(y_size, feats, 1, fstate.truth, 1);
|
||||
copy_gpu(y_size, feats, 1, fstate.truth, 1);
|
||||
|
||||
forward_network_gpu(gnet, gstate);
|
||||
float *gen = gnet.layers[gnet.n-1].output_gpu;
|
||||
copy_ongpu(x_size, gen, 1, fstate.input, 1);
|
||||
copy_gpu(x_size, gen, 1, fstate.input, 1);
|
||||
|
||||
fill_ongpu(x_size, 0, fstate.delta, 1);
|
||||
fill_gpu(x_size, 0, fstate.delta, 1);
|
||||
forward_network_gpu(fnet, fstate);
|
||||
backward_network_gpu(fnet, fstate);
|
||||
//HERE
|
||||
|
||||
astate.input = gen;
|
||||
fill_ongpu(ax_size, 0, astate.delta, 1);
|
||||
fill_gpu(ax_size, 0, astate.delta, 1);
|
||||
forward_network_gpu(anet, astate);
|
||||
backward_network_gpu(anet, astate);
|
||||
|
||||
float *delta = imlayer.delta_gpu;
|
||||
fill_ongpu(x_size, 0, delta, 1);
|
||||
scal_ongpu(x_size, 100, astate.delta, 1);
|
||||
scal_ongpu(x_size, .001, fstate.delta, 1);
|
||||
axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1);
|
||||
axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
|
||||
fill_gpu(x_size, 0, delta, 1);
|
||||
scal_gpu(x_size, 100, astate.delta, 1);
|
||||
scal_gpu(x_size, .001, fstate.delta, 1);
|
||||
axpy_gpu(x_size, 1, fstate.delta, 1, delta, 1);
|
||||
axpy_gpu(x_size, 1, astate.delta, 1, delta, 1);
|
||||
|
||||
//fill_ongpu(x_size, 0, delta, 1);
|
||||
//fill_gpu(x_size, 0, delta, 1);
|
||||
//cuda_push_array(delta, X, x_size);
|
||||
//axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1);
|
||||
//axpy_gpu(x_size, -1, imlayer.output_gpu, 1, delta, 1);
|
||||
//printf("pix error: %f\n", cuda_mag_array(delta, x_size));
|
||||
printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size));
|
||||
printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size));
|
||||
//axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
|
||||
//axpy_gpu(x_size, 1, astate.delta, 1, delta, 1);
|
||||
|
||||
backward_network_gpu(gnet, gstate);
|
||||
|
||||
@ -273,7 +273,7 @@ void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear
|
||||
|
||||
float *imerror = cuda_make_array(0, imlayer.outputs);
|
||||
float *ones_gpu = cuda_make_array(0, ay_size);
|
||||
fill_ongpu(ay_size, .9, ones_gpu, 1);
|
||||
fill_gpu(ay_size, .9, ones_gpu, 1);
|
||||
|
||||
float aloss_avg = -1;
|
||||
float gloss_avg = -1;
|
||||
@ -318,23 +318,23 @@ void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear
|
||||
*net.seen += net.batch;
|
||||
forward_network_gpu(net, gstate);
|
||||
|
||||
fill_ongpu(imlayer.outputs, 0, imerror, 1);
|
||||
fill_gpu(imlayer.outputs, 0, imerror, 1);
|
||||
astate.input = imlayer.output_gpu;
|
||||
astate.delta = imerror;
|
||||
astate.truth = ones_gpu;
|
||||
forward_network_gpu(anet, astate);
|
||||
backward_network_gpu(anet, astate);
|
||||
|
||||
scal_ongpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1);
|
||||
scal_gpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1);
|
||||
|
||||
backward_network_gpu(net, gstate);
|
||||
|
||||
scal_ongpu(imlayer.outputs, 1000, imerror, 1);
|
||||
scal_gpu(imlayer.outputs, 1000, imerror, 1);
|
||||
|
||||
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
|
||||
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs));
|
||||
|
||||
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
||||
axpy_gpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
||||
|
||||
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
|
||||
|
||||
@ -533,9 +533,9 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
|
||||
*gnet.seen += gnet.batch;
|
||||
forward_network_gpu(gnet);
|
||||
|
||||
fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
||||
fill_ongpu(anet.truths*anet.batch, .95, anet.truth_gpu, 1);
|
||||
copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
||||
fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
||||
fill_gpu(anet.truths*anet.batch, .95, anet.truth_gpu, 1);
|
||||
copy_gpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
||||
anet.delta_gpu = imerror;
|
||||
forward_network_gpu(anet);
|
||||
backward_network_gpu(anet);
|
||||
@ -543,13 +543,13 @@ void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear,
|
||||
float genaloss = *anet.cost / anet.batch;
|
||||
printf("%f\n", genaloss);
|
||||
|
||||
scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
||||
scal_ongpu(imlayer.outputs*imlayer.batch, .00, gnet.layers[gnet.n-1].delta_gpu, 1);
|
||||
scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
||||
scal_gpu(imlayer.outputs*imlayer.batch, .00, gnet.layers[gnet.n-1].delta_gpu, 1);
|
||||
|
||||
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
|
||||
printf("features %f\n", cuda_mag_array(gnet.layers[gnet.n-1].delta_gpu, imlayer.outputs*imlayer.batch));
|
||||
|
||||
axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet.layers[gnet.n-1].delta_gpu, 1);
|
||||
axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet.layers[gnet.n-1].delta_gpu, 1);
|
||||
|
||||
backward_network_gpu(gnet);
|
||||
|
||||
@ -716,21 +716,21 @@ void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int cle
|
||||
*net.seen += net.batch;
|
||||
forward_network_gpu(net);
|
||||
|
||||
fill_ongpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
||||
copy_ongpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
||||
fill_ongpu(anet.inputs*anet.batch, .95, anet.truth_gpu, 1);
|
||||
fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
|
||||
copy_gpu(anet.inputs*anet.batch, imlayer.output_gpu, 1, anet.input_gpu, 1);
|
||||
fill_gpu(anet.inputs*anet.batch, .95, anet.truth_gpu, 1);
|
||||
anet.delta_gpu = imerror;
|
||||
forward_network_gpu(anet);
|
||||
backward_network_gpu(anet);
|
||||
|
||||
scal_ongpu(imlayer.outputs*imlayer.batch, 1./100., net.layers[net.n-1].delta_gpu, 1);
|
||||
scal_gpu(imlayer.outputs*imlayer.batch, 1./100., net.layers[net.n-1].delta_gpu, 1);
|
||||
|
||||
scal_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
||||
scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
|
||||
|
||||
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
|
||||
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs*imlayer.batch));
|
||||
|
||||
axpy_ongpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net.layers[net.n-1].delta_gpu, 1);
|
||||
axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, net.layers[net.n-1].delta_gpu, 1);
|
||||
|
||||
backward_network_gpu(net);
|
||||
|
||||
@ -876,7 +876,7 @@ void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfi
|
||||
|
||||
float *imerror = cuda_make_array(0, imlayer.outputs);
|
||||
float *ones_gpu = cuda_make_array(0, ay_size);
|
||||
fill_ongpu(ay_size, 1, ones_gpu, 1);
|
||||
fill_gpu(ay_size, 1, ones_gpu, 1);
|
||||
|
||||
float aloss_avg = -1;
|
||||
float gloss_avg = -1;
|
||||
@ -902,15 +902,15 @@ void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfi
|
||||
*net.seen += net.batch;
|
||||
forward_network_gpu(net, gstate);
|
||||
|
||||
fill_ongpu(imlayer.outputs, 0, imerror, 1);
|
||||
fill_gpu(imlayer.outputs, 0, imerror, 1);
|
||||
astate.input = imlayer.output_gpu;
|
||||
astate.delta = imerror;
|
||||
astate.truth = ones_gpu;
|
||||
forward_network_gpu(anet, astate);
|
||||
backward_network_gpu(anet, astate);
|
||||
|
||||
scal_ongpu(imlayer.outputs, 1, imerror, 1);
|
||||
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
||||
scal_gpu(imlayer.outputs, 1, imerror, 1);
|
||||
axpy_gpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
|
||||
|
||||
backward_network_gpu(net, gstate);
|
||||
|
||||
|
@ -50,7 +50,7 @@ void optimize_picture(network *net, image orig, int max_layer, float scale, floa
|
||||
cuda_push_array(net->input_gpu, im.data, net->inputs);
|
||||
|
||||
forward_network_gpu(*net);
|
||||
copy_ongpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);
|
||||
copy_gpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1);
|
||||
|
||||
cuda_pull_array(last.delta_gpu, last.delta, last.outputs);
|
||||
calculate_loss(last.delta, last.delta, last.outputs, thresh);
|
||||
@ -141,7 +141,7 @@ void reconstruct_picture(network net, float *features, image recon, image update
|
||||
|
||||
forward_network_gpu(net);
|
||||
cuda_push_array(l.delta_gpu, features, l.outputs);
|
||||
axpy_ongpu(l.outputs, -1, l.output_gpu, 1, l.delta_gpu, 1);
|
||||
axpy_gpu(l.outputs, -1, l.output_gpu, 1, l.delta_gpu, 1);
|
||||
backward_network_gpu(net);
|
||||
|
||||
cuda_pull_array(net.delta_gpu, delta.data, delta.w*delta.h*delta.c);
|
||||
|
@ -114,7 +114,10 @@ void reset_rnn_state(network net, int b)
|
||||
#ifdef GPU
|
||||
layer l = net.layers[i];
|
||||
if(l.state_gpu){
|
||||
fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
||||
fill_gpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
||||
}
|
||||
if(l.h_gpu){
|
||||
fill_gpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -27,6 +27,11 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
}
|
||||
srand(time(0));
|
||||
network net = nets[0];
|
||||
image pred = get_network_image(net);
|
||||
|
||||
int div = net.w/pred.w;
|
||||
assert(pred.w * div == net.w);
|
||||
assert(pred.h * div == net.h);
|
||||
|
||||
int imgs = net.batch * net.subdivisions * ngpus;
|
||||
|
||||
@ -46,6 +51,7 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
args.w = net.w;
|
||||
args.h = net.h;
|
||||
args.threads = 32;
|
||||
args.scale = div;
|
||||
|
||||
args.min = net.min_crop;
|
||||
args.max = net.max_crop;
|
||||
@ -75,15 +81,6 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
image tr = float_to_image(net.w, net.h, 81, train.y.vals[0]);
|
||||
image im = float_to_image(net.w, net.h, net.c, train.X.vals[0]);
|
||||
image mask = mask_to_rgb(tr);
|
||||
show_image(im, "input");
|
||||
show_image(mask, "truth");
|
||||
#ifdef OPENCV
|
||||
cvWaitKey(100);
|
||||
#endif
|
||||
free_image(mask);
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
@ -98,6 +95,20 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
#else
|
||||
loss = train_network(net, train);
|
||||
#endif
|
||||
if(1){
|
||||
image tr = float_to_image(net.w/div, net.h/div, 80, train.y.vals[net.batch]);
|
||||
image im = float_to_image(net.w, net.h, net.c, train.X.vals[net.batch]);
|
||||
image mask = mask_to_rgb(tr);
|
||||
image prmask = mask_to_rgb(pred);
|
||||
show_image(im, "input");
|
||||
show_image(prmask, "pred");
|
||||
show_image(mask, "truth");
|
||||
#ifdef OPENCV
|
||||
cvWaitKey(100);
|
||||
#endif
|
||||
free_image(mask);
|
||||
free_image(prmask);
|
||||
}
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
|
Reference in New Issue
Block a user