mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
stuff for carlo
This commit is contained in:
parent
d790f21c9a
commit
8a767f1066
79
ai2.mk
Normal file
79
ai2.mk
Normal file
@ -0,0 +1,79 @@
|
||||
GPU=0
|
||||
CUDNN=0
|
||||
OPENCV=0
|
||||
DEBUG=0
|
||||
AI2=1
|
||||
|
||||
ARCH= --gpu-architecture=compute_52 --gpu-code=compute_52
|
||||
|
||||
VPATH=./src/
|
||||
EXEC=darknet
|
||||
OBJDIR=./obj/
|
||||
|
||||
CC=gcc -std=gnu11
|
||||
NVCC=nvcc
|
||||
OPTS=-Ofast
|
||||
LDFLAGS= -lm -pthread
|
||||
COMMON=
|
||||
CFLAGS=-Wall -Wfatal-errors
|
||||
|
||||
ifeq ($(DEBUG), 1)
|
||||
OPTS=-O0 -g
|
||||
endif
|
||||
|
||||
CFLAGS+=$(OPTS)
|
||||
|
||||
ifeq ($(OPENCV), 1)
|
||||
COMMON+= -DOPENCV
|
||||
CFLAGS+= -DOPENCV
|
||||
LDFLAGS+= `pkg-config --libs opencv`
|
||||
COMMON+= `pkg-config --cflags opencv`
|
||||
endif
|
||||
|
||||
ifeq ($(AI2), 1)
|
||||
COMMON+= -DAI2
|
||||
CFLAGS+= -DAI2
|
||||
endif
|
||||
|
||||
ifeq ($(GPU), 1)
|
||||
COMMON+= -DGPU -I/usr/local/cuda/include/
|
||||
CFLAGS+= -DGPU
|
||||
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
|
||||
endif
|
||||
|
||||
ifeq ($(CUDNN), 1)
|
||||
COMMON+= -DCUDNN
|
||||
CFLAGS+= -DCUDNN
|
||||
LDFLAGS+= -lcudnn
|
||||
endif
|
||||
|
||||
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o coco_demo.o tag.o cifar.o yolo_demo.o go.o batchnorm_layer.o art.o xnor_layer.o common.o binary_convolution.o
|
||||
ifeq ($(GPU), 1)
|
||||
LDFLAGS+= -lstdc++
|
||||
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
|
||||
endif
|
||||
|
||||
OBJS = $(addprefix $(OBJDIR), $(OBJ))
|
||||
DEPS = $(wildcard src/*.h) Makefile
|
||||
|
||||
all: obj results $(EXEC)
|
||||
|
||||
$(EXEC): $(OBJS)
|
||||
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
$(OBJDIR)%.o: %.c $(DEPS)
|
||||
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
|
||||
|
||||
$(OBJDIR)%.o: %.cu $(DEPS)
|
||||
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
|
||||
|
||||
obj:
|
||||
mkdir -p obj
|
||||
results:
|
||||
mkdir -p results
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
clean:
|
||||
rm -rf $(OBJS) $(EXEC)
|
||||
|
148
cfg/xyolo.test.cfg
Normal file
148
cfg/xyolo.test.cfg
Normal file
@ -0,0 +1,148 @@
|
||||
[net]
|
||||
batch=1
|
||||
subdivisions=1
|
||||
height=448
|
||||
width=448
|
||||
channels=3
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
|
||||
learning_rate=0.0001
|
||||
policy=steps
|
||||
steps=20,40,60,80,20000,30000
|
||||
scales=5,5,2,2,.1,.1
|
||||
max_batches = 40000
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
crop_height=448
|
||||
flip=0
|
||||
angle=0
|
||||
saturation = 1.5
|
||||
exposure = 1.5
|
||||
noadjust=1
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=16
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
xnor = 1
|
||||
batch_normalize=1
|
||||
filters=32
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
xnor = 1
|
||||
batch_normalize=1
|
||||
filters=64
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
xnor = 1
|
||||
batch_normalize=1
|
||||
filters=128
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
xnor = 1
|
||||
batch_normalize=1
|
||||
filters=256
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
xnor = 1
|
||||
batch_normalize=1
|
||||
filters=512
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[maxpool]
|
||||
size=2
|
||||
stride=2
|
||||
|
||||
[batchnorm]
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
filters=1024
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
activation=leaky
|
||||
|
||||
[convolutional]
|
||||
batch_normalize=1
|
||||
size=3
|
||||
stride=1
|
||||
pad=1
|
||||
filters=128
|
||||
activation=leaky
|
||||
|
||||
[connected]
|
||||
output= 1470
|
||||
activation=linear
|
||||
|
||||
[detection]
|
||||
classes=20
|
||||
coords=4
|
||||
rescore=1
|
||||
side=7
|
||||
num=2
|
||||
softmax=0
|
||||
sqrt=1
|
||||
jitter=.2
|
||||
|
||||
object_scale=1
|
||||
noobject_scale=.5
|
||||
class_scale=1
|
||||
coord_scale=5
|
||||
|
598
src/binary_convolution.c
Normal file
598
src/binary_convolution.c
Normal file
@ -0,0 +1,598 @@
|
||||
#include "binary_convolution.h"
|
||||
|
||||
int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim) { // TODO unroll
|
||||
int accumulator = 0;
|
||||
for (int z = 0; z < vdim.z / BITS_PER_BINARY_WORD; z++) {
|
||||
for (int y = 0; y < vdim.y; y++) {
|
||||
for (int x = 0; x < vdim.x; x++) {
|
||||
int idx = z*vdim.y*vdim.x + y*vdim.x + x;
|
||||
accumulator += __builtin_popcount(~(a[idx] ^ b[idx])); // count the XNOR of the two bit vectors
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return accumulator;
|
||||
}
|
||||
|
||||
/**
|
||||
* Pre-conditions:
|
||||
* alpha_volume is an array of size x*y*z.
|
||||
* alpha_plane is an array of size x*y.
|
||||
* alpha_volume (x,y,z) is transposed to (z,x,y).
|
||||
*/
|
||||
void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim) {
|
||||
for (int y = 0; y < vdim.y; ++y) {
|
||||
for (int x = 0; x < vdim.x; ++x) {
|
||||
int out = y * vdim.x + x;
|
||||
double accum = 0.0;
|
||||
for (int z = 0; z < vdim.z; ++z) {
|
||||
accum += alpha_volume[out * vdim.z + z];
|
||||
}
|
||||
|
||||
alpha_plane[out] = accum / vdim.z;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** @brief Wrapper function for generating the beta scaling factor */
|
||||
void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim) {
|
||||
ai2_calc_alpha(beta_plane, beta_volume, vdim);
|
||||
}
|
||||
|
||||
/** @brief Set the bit in a binary word */
|
||||
void ai2_bitset(BINARY_WORD *bword, unsigned int position) {
|
||||
BINARY_WORD mask = (1 << position);
|
||||
*bword = *bword | mask;
|
||||
}
|
||||
|
||||
/** @brief Checks that the bit is set in a binary word */
|
||||
int ai2_is_set(BINARY_WORD bword, unsigned int position) {
|
||||
unsigned int position_complement = (BITS_PER_BINARY_WORD - 1) - position; // number of leading bits before the bit position of interest
|
||||
bword = (bword << position_complement); // zero out leading bits
|
||||
bword = (bword >> (BITS_PER_BINARY_WORD - 1)); // shift bit position of interest to the 0th position
|
||||
return (bword & 0x1); // test if bit position of interest is set
|
||||
}
|
||||
|
||||
void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 dim) {
|
||||
ai2_transpose3D(real_vol, dim); // (x,y,z) -> (z,x,y)
|
||||
|
||||
int sz = dim.x * dim.y * dim.z;
|
||||
for (int i = 0; i < sz; i += BITS_PER_BINARY_WORD) {
|
||||
BINARY_WORD tmp = 0x00000000;
|
||||
for (int x = 0; x < BITS_PER_BINARY_WORD; ++x) {
|
||||
int waddr = x + i;
|
||||
if (signbit(real_vol[waddr]) == 0)
|
||||
ai2_bitset(&tmp, (BITS_PER_BINARY_WORD - 1) - x);
|
||||
}
|
||||
binary_vol[i / BITS_PER_BINARY_WORD] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 dim) { // TODO unit tests
|
||||
for (int z = 0; z < dim.z; z++) {
|
||||
for (int y = 0; y < dim.y; y++) {
|
||||
for (int x = 0; x < dim.x / BITS_PER_BINARY_WORD; x++) { // TODO boundary checks, for uneven input
|
||||
BINARY_WORD word = binary_vol[z*dim.y*dim.x + y*dim.x + x];
|
||||
for (int t = 0; t < BITS_PER_BINARY_WORD; ++t) {
|
||||
int oidx = z*dim.y*dim.x + y*dim.x + x * BITS_PER_BINARY_WORD + t;
|
||||
if (ai2_is_set(word, t))
|
||||
real_vol[oidx] = 1.f;
|
||||
else
|
||||
real_vol[oidx] = -1.f;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose channels back to output
|
||||
ai2_transpose3D(real_vol, dim); // (z,y,x) -> (x,y,z)
|
||||
}
|
||||
|
||||
/* @brief: input is padded.
|
||||
*/
|
||||
void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride) {
|
||||
|
||||
int r, rd, c, cd;
|
||||
int wx_2 = wx / 2;
|
||||
int wy_2 = wy / 2;
|
||||
|
||||
// Indexing for output pixels. x = [wx_2, ix + wx_2 - 1], y = [wy_2, iy + wy_2 - 1]
|
||||
int sx = pad; // start x
|
||||
int ex = ix + pad - 1; // end x
|
||||
int sy = pad; // start y
|
||||
int ey = iy + pad - 1; // end y
|
||||
|
||||
// Indexing for weights
|
||||
int wsx, wex, wsy, wey;
|
||||
if (wx % 2 == 1) { // odd weights
|
||||
wsx = -wx_2; wex = wx_2 + 1;
|
||||
wsy = -wy_2; wey = wy_2 + 1;
|
||||
}
|
||||
else {
|
||||
wsx = -wx_2; wex = wx_2;
|
||||
wsy = -wy_2; wey = wy_2;
|
||||
}
|
||||
|
||||
int px = ix + 2*pad;
|
||||
//int py = iy + 2*pad;
|
||||
|
||||
for (r = sy; r <= ey; ++r) {
|
||||
for (c = sx; c <= ex; ++c) {
|
||||
int accumulator = 0;
|
||||
for (rd = wsy; rd < wey; ++rd) {
|
||||
for (cd = wsx; cd < wex; ++cd) {
|
||||
int iidx = (r+rd)*px + (c+cd);
|
||||
BINARY_WORD pixel = input[iidx];
|
||||
//BINARY_WORD pixel = 0xFFFFFFFF;
|
||||
//BINARY_WORD weight = 0xFFFFFFFF;
|
||||
int widx = (rd + wy_2)*wx + (cd+wx_2);
|
||||
BINARY_WORD weight = weights[widx];
|
||||
accumulator += __builtin_popcount(~(pixel ^ weight));
|
||||
}
|
||||
}
|
||||
|
||||
// Padded space
|
||||
int oidx = r*px + c;
|
||||
output[oidx] += (float) accumulator;
|
||||
}
|
||||
}
|
||||
|
||||
//for (r = sy; r <= ey; ++r) {
|
||||
// for (c = sx; c <= ex; ++c) {
|
||||
// int accumulator = 0;
|
||||
// for (rd = -wy_2; rd < wy_2; ++rd) {
|
||||
// for (cd = -wx_2; cd < wx_2; ++cd) {
|
||||
// int iidx = (r+rd)*px + (c+cd);
|
||||
// BINARY_WORD pixel = input[iidx];
|
||||
// //BINARY_WORD pixel = 0xFFFFFFFF;
|
||||
// //BINARY_WORD weight = 0xFFFFFFFF;
|
||||
// int widx = (rd + wy_2)*wx + (cd+wx_2);
|
||||
// BINARY_WORD weight = weights[widx];
|
||||
// accumulator += __builtin_popcount(~(pixel ^ weight));
|
||||
// }
|
||||
// }
|
||||
|
||||
// // Padded space
|
||||
// int oidx = r*px + c;
|
||||
// output[oidx] += (float) accumulator;
|
||||
// }
|
||||
//}
|
||||
|
||||
//ai2_bin_conv_within_boundary(output, input, weights, ix, iy, wx, wy, stride);
|
||||
//ai2_bin_conv_borders(output, input, weights, ix, iy, wx, wy, stride);
|
||||
}
|
||||
|
||||
void ai2_pointwise_mul_mm(float *output, const float *input, int N) {
|
||||
int i = 0;
|
||||
|
||||
while (i + 8 <= N) {
|
||||
output[i+0] *= input[i+0];
|
||||
output[i+1] *= input[i+1];
|
||||
output[i+2] *= input[i+2];
|
||||
output[i+3] *= input[i+3];
|
||||
output[i+4] *= input[i+4];
|
||||
output[i+5] *= input[i+5];
|
||||
output[i+6] *= input[i+6];
|
||||
output[i+7] *= input[i+7];
|
||||
|
||||
i += 8;
|
||||
}
|
||||
|
||||
while (++i < N) // Finish iteration that's leftover (e.g., last batch not divisible by 8 exactly)
|
||||
output[i] *= input[i];
|
||||
}
|
||||
|
||||
/** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors
|
||||
* Pre-conditions: wx < ix, and wy < iy
|
||||
*/
|
||||
void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad) {
|
||||
// Slower version
|
||||
// for (int y = 0; y < iy; ++y)
|
||||
// for (int x = 0; x < ix; x++)
|
||||
// output[y*ix+x] *= input[(y % wy)*wx + (x % wx)];
|
||||
|
||||
// Stride prefetch optimized
|
||||
for (int s = 0; s < wy; ++s) { // for each strip
|
||||
const float *strip_ptr = &alpha[s*wx];
|
||||
for (int y = pad; y < pad + (iy / wy); ++y) { //
|
||||
int stride = y*((ix+2*pad)*wy) + s*(ix+2*pad);
|
||||
float *output_ptr = &output[stride];
|
||||
|
||||
for (int x = 0; x < ix; ++x) {
|
||||
output_ptr[x] *= strip_ptr[x % wx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input) {
|
||||
if (new_input != NULL) {
|
||||
if (layer->input != NULL)
|
||||
free(layer->input);
|
||||
layer->input = new_input;
|
||||
|
||||
dim3 dim;
|
||||
dim.x = layer->px;
|
||||
dim.y = layer->py;
|
||||
dim.z = layer->c;
|
||||
|
||||
// Binarize input
|
||||
ai2_flt_to_bin(layer->binary_input, layer->input, dim);
|
||||
|
||||
float *new_beta = (float *) calloc (dim.x * dim.y, sizeof(float));
|
||||
ai2_setFltBeta(layer, new_beta);
|
||||
|
||||
// layer->input is transposed to (z,x,y) already
|
||||
ai2_calc_beta(layer->beta, layer->input, dim);
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input) {
|
||||
if (new_input != NULL) {
|
||||
if (layer->binary_input != NULL)
|
||||
free(layer->binary_input);
|
||||
layer->binary_input = new_input;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights) {
|
||||
if (new_weights != NULL) {
|
||||
if (layer->weights != NULL)
|
||||
free(layer->weights);
|
||||
layer->weights = new_weights;
|
||||
|
||||
dim3 dim;
|
||||
dim.x = layer->wx;
|
||||
dim.y = layer->wy;
|
||||
dim.z = layer->c;
|
||||
|
||||
ai2_flt_to_bin(layer->binary_weights, layer->weights, dim);
|
||||
|
||||
// Calculate alpha
|
||||
if (layer->alpha != NULL)
|
||||
free(layer->alpha);
|
||||
|
||||
layer->alpha = (float *) calloc (dim.x * dim.y, sizeof(float));
|
||||
// layer->weights is already transposed to (z,x,y) from ai2_flt_to_bin()
|
||||
ai2_calc_alpha(layer->alpha, layer->weights, dim);
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights) {
|
||||
if (new_weights != NULL) {
|
||||
if (layer->binary_weights != NULL)
|
||||
free(layer->binary_weights);
|
||||
layer->binary_weights = new_weights;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output) {
|
||||
if (new_output != NULL) {
|
||||
if (layer->output != NULL)
|
||||
free(layer->output);
|
||||
layer->output = new_output;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output) {
|
||||
if (new_output != NULL) {
|
||||
if (layer->binary_output != NULL)
|
||||
free(layer->binary_output);
|
||||
layer->binary_output = new_output;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha) {
|
||||
if (new_alpha != NULL) {
|
||||
if (layer->alpha != NULL)
|
||||
free(layer->alpha);
|
||||
layer->alpha = new_alpha;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta) {
|
||||
if (new_beta != NULL) {
|
||||
if (layer->beta != NULL)
|
||||
free(layer->beta);
|
||||
layer->beta = new_beta;
|
||||
}
|
||||
}
|
||||
|
||||
void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta) {
|
||||
if (new_new_beta != NULL) {
|
||||
if (layer->new_beta != NULL)
|
||||
free(layer->new_beta);
|
||||
layer->new_beta = new_new_beta;
|
||||
}
|
||||
}
|
||||
|
||||
float* ai2_getFltOutput(ai2_bin_conv_layer *layer) {
|
||||
//if (layer->output != NULL && layer->binary_output != NULL) {
|
||||
if (layer->output != NULL) {
|
||||
|
||||
// The idea here was that all intermediate states are stored in the binary output.
|
||||
// Whenever the user needs the real-valued output, the conversion happens at this function call.
|
||||
//dim3 dim;
|
||||
//dim.x = layer->px;
|
||||
//dim.y = layer->py;
|
||||
//dim.z = layer->batch;
|
||||
//ai2_bin_to_flt(layer->output, layer->binary_output, dim);
|
||||
|
||||
return layer->output;
|
||||
}
|
||||
else
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void ai2_transpose3D(float *data, dim3 d) {
|
||||
// Slow transpose for correctness
|
||||
|
||||
// (x,y,z) becomes (z,x,y). Requires two transposes:
|
||||
// (x,y,z) -> (x,z,y).
|
||||
// (x,z,y) -> (z,x,y).
|
||||
|
||||
// Intermediate buffer
|
||||
float *new_data = (float *) calloc (d.x * d.y * d.z, sizeof(float));
|
||||
|
||||
// Transpose y and z axis.
|
||||
// (x,y,z) -> (x,z,y);
|
||||
for (int y = 0; y < d.y; ++y) {
|
||||
for (int z = 0; z < d.z; ++z) {
|
||||
for (int x = 0; x < d.x; ++x) {
|
||||
new_data[y*d.x*d.z + z*d.x + x] = data[z*d.x*d.y + y*d.x + x];
|
||||
//new_data[z*d.y*d.x + y*d.x + x] = data[y*d.x*d.z + z*d.x + x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose x and z axis.
|
||||
// (x,z,y) -> (z,x,y)
|
||||
for (int y = 0; y < d.y; ++y) {
|
||||
for (int x = 0; x < d.x; ++x) {
|
||||
for (int z = 0; z < d.z; ++z) {
|
||||
data[y*d.z*d.x + x*d.z + z] = new_data[y*d.x*d.z + x + z*d.x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(new_data);
|
||||
}
|
||||
|
||||
int ai2_isFloatWhole(float f) { // TODO unit test
|
||||
return (ceilf(f) == f) ? 1 : 0;
|
||||
}
|
||||
|
||||
/* @brief Initialize and create all memory arrays for this layer
|
||||
* b - batches (number of filter batches)
|
||||
* c - input channels
|
||||
* ix - input width
|
||||
* iy - input height
|
||||
* wx - weight/filter width
|
||||
* wy - weight/filter height
|
||||
* s - stride between sliding windows
|
||||
* pad - the amount of padding
|
||||
*/
|
||||
ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad) {
|
||||
// http://cs231n.github.io/convolutional-networks/
|
||||
// See: spatial arrangement section for determining what the output size will be
|
||||
float output_size = ((ix - wx + 2 * pad) / s) + 1;
|
||||
if (ai2_isFloatWhole(output_size) == 0) {
|
||||
fprintf(stderr, "ERROR! conv layer of (b,c,ix,iy,s,pad) = (%d, %d, %d, %d, %d, %d) will give "
|
||||
" invalid output dimension: %fx%f\n", b, c, ix, iy, s, pad, output_size, output_size);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// TODO: Support strided output
|
||||
if (s != 1) {
|
||||
fprintf(stderr, "ERROR! Only stride values of 1 is supported\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// padded input size
|
||||
int px = (int) ix + 2*pad;
|
||||
int py = (int) iy + 2*pad;
|
||||
|
||||
ai2_bin_conv_layer l = {0}; // initialize all to 0
|
||||
l.input = (float *) calloc (c * px * py, sizeof(float)); // is padded
|
||||
l.binary_input = (BINARY_WORD *) calloc (c * px * py / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD)); // is padded
|
||||
|
||||
dim3 dim;
|
||||
dim.x = px;
|
||||
dim.y = py;
|
||||
dim.z = c;
|
||||
ai2_flt_to_bin(l.binary_input, l.input, dim);
|
||||
|
||||
l.weights = (float *) calloc (b * c * wx * wy, sizeof(float));
|
||||
l.binary_weights = (BINARY_WORD *) calloc (b * c * wx * wy / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD));
|
||||
|
||||
l.output = (float *) calloc (c * px * py, sizeof(float)); // is padded
|
||||
l.new_beta = (float *) calloc(px * py, sizeof(float)); // is padded
|
||||
|
||||
l.batch = b;
|
||||
l.c = c;
|
||||
l.h = iy;
|
||||
l.w = ix;
|
||||
l.stride = s;
|
||||
l.pad = pad;
|
||||
l.px = px;
|
||||
l.py = py;
|
||||
l.wx = wx;
|
||||
l.wy = wy;
|
||||
|
||||
// The following parameters are uninitialized and should be set elsewhere:
|
||||
// l.beta - padded
|
||||
// l.alpha - not padded
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer) {
|
||||
if (layer->input) free (layer->input);
|
||||
if (layer->binary_input) free(layer->binary_input);
|
||||
if (layer->weights) free (layer->weights);
|
||||
if (layer->binary_weights) free(layer->binary_weights);
|
||||
if (layer->output) free(layer->output);
|
||||
if (layer->binary_output) free (layer->binary_output);
|
||||
if (layer->alpha) free(layer->alpha);
|
||||
if (layer->beta) free(layer->beta);
|
||||
if (layer->new_beta) free(layer->new_beta);
|
||||
}
|
||||
|
||||
void ai2_throw_error(char *str) {
|
||||
fprintf(stderr, "ERROR: %s\n", str);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
void ai2_bin_forward(ai2_bin_conv_layer *l) {
|
||||
if (l->input == NULL) ai2_throw_error("Input was not allocated and set in this layer");
|
||||
if (l->weights == NULL) ai2_throw_error("Weights was not allocated and set in this layer");
|
||||
if (l->output == NULL) ai2_throw_error("Output was not allocated and set in this layer");
|
||||
if (l->alpha == NULL) ai2_throw_error("Alpha was not allocated and set in this layer");
|
||||
if (l->beta == NULL) ai2_throw_error("Beta was not allocated and set in this layer");
|
||||
|
||||
if (l->c % 32 != 0) ai2_throw_error("Channel is not divisible by 32. Need to implement mask "
|
||||
"before supporting arbitrary channel size. For now, "
|
||||
"set the channel size to the nearest multiple of 32 "
|
||||
"and ignore any ''extra'' channels unused.");
|
||||
|
||||
l->c /= BITS_PER_BINARY_WORD; // For compensating with doing more work per word
|
||||
|
||||
float *output = l->output;
|
||||
float *alpha = l->alpha;
|
||||
float *beta = l->beta;
|
||||
int px = l->px;
|
||||
int py = l->py;
|
||||
BINARY_WORD *binary_weights = l->binary_weights;
|
||||
|
||||
for (int z = 0; z < l->batch; ++z) { // for each filter map
|
||||
BINARY_WORD *binary_input = l->binary_input;
|
||||
for (int c = 0; c < l->c; ++c) { // for each input channel
|
||||
ai2_bin_conv2D(output, binary_input, binary_weights, l->w, l->h, l->wx, l->wy, l->pad, l->stride);
|
||||
binary_input += px*py; // increment with next 2D plane
|
||||
binary_weights += l->wx*l->wy; // increment with next 2D plane
|
||||
|
||||
ai2_pointwise_mul_mm(output, beta, px*py);
|
||||
ai2_pointwise_mul_mm_2d(output, alpha, l->w, l->h, l->wx, l->wy, l->pad);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Deprecated
|
||||
//double ai2_bin_conv_benchmark(ConvolutionArgs conv_args) {
|
||||
// printf("Running Binary Convolution test!\n");
|
||||
//
|
||||
// size_t ix, iy, iz, wx, wy, wz, L, stride;
|
||||
// ix = conv_args.input.x;
|
||||
// iy = conv_args.input.y;
|
||||
// iz = conv_args.input.z;
|
||||
// wx = conv_args.weights.x;
|
||||
// wy = conv_args.weights.y;
|
||||
// wz = conv_args.weights.z;
|
||||
// L = BITS_PER_BINARY_WORD;
|
||||
// stride = 1;
|
||||
//
|
||||
// printf("Input size (num elements, xyz): %zu %zu %zu\n", ix, iy, iz);
|
||||
// printf("Weights size (num elements. xyz): %zu %zu %zu\n", wx, wy, wz);
|
||||
//
|
||||
// double sz_input_elements = ix * iy * iz;
|
||||
// double sz_input_bytes = getSizeBytesBinaryArray(conv_args.input);
|
||||
// double sz_weight_bytes = getSizeBytesBinaryArray(conv_args.weights);
|
||||
//
|
||||
// printf("Input Size (MB): %f\n", sz_input_bytes / (1 << 20));
|
||||
// printf("Weight Size (MB): %f\n", sz_weight_bytes / (1 << 20));
|
||||
//
|
||||
// BINARY_WORD *binary_input = mallocBinaryVolume(conv_args.input);
|
||||
// BINARY_WORD *binary_weights = mallocBinaryVolume(conv_args.weights);
|
||||
// BINARY_WORD *b_input = binary_input; // alias
|
||||
// BINARY_WORD *b_weight = binary_weights; // alias
|
||||
// float *output = mallocFloatVolume(conv_args.output);
|
||||
// float *output_ptr = output;
|
||||
// float *beta = (float *) malloc(sizeof(float) * ix * iy); // we assume beta is given to us
|
||||
// float *alpha = (float *) malloc(sizeof(float) * wx * wy); // we assume alpha is given to us
|
||||
// float *new_output = mallocFloatVolume(conv_args.output);
|
||||
// //float *new_output_ptr = new_output;
|
||||
// float *new_beta = (float *) malloc(sizeof(float) * ix * iy);
|
||||
// //float *new_beta_ptr = new_beta;
|
||||
//
|
||||
// // Scale number of computations because we're packing.
|
||||
// // After this point, you should not have to reason about input dimensions for input and weights.
|
||||
// iz /= BITS_PER_BINARY_WORD;
|
||||
// wz /= BITS_PER_BINARY_WORD;
|
||||
//
|
||||
// // Calculate time taken by a request
|
||||
// struct timeval start_time;
|
||||
// gettimeofday(&start_time, NULL);
|
||||
//
|
||||
// // Preprocessing
|
||||
// int pad = wx/2;
|
||||
//
|
||||
// for (int z = 0; z < iz; ++z) { // number of channels
|
||||
// ai2_bin_conv2D(output_ptr, b_input, b_weight, ix, iy, wx, wy, pad, stride);
|
||||
// b_input += ix*iy; // increment with next 2D plane
|
||||
// b_weight += wx*wy; // increment with next 2D plane
|
||||
//
|
||||
// ai2_pointwise_mul_mm(output_ptr, beta, ix*iy);
|
||||
// ai2_pointwise_mul_mm_2d(output_ptr, alpha, ix, iy, wx, wy, pad);
|
||||
// }
|
||||
//
|
||||
// // copy to new array (need to wrap this around); TODO.
|
||||
// struct timeval end_time;
|
||||
// gettimeofday(&end_time, NULL);
|
||||
//
|
||||
// struct timeval diff_time;
|
||||
// timersub(&end_time, &start_time, &diff_time);
|
||||
// double time_conv_s = diff_time.tv_sec + diff_time.tv_usec * 1e-6;
|
||||
// double time_conv_ms = time_conv_s * 1000.0;
|
||||
//
|
||||
// double model_ops = (3*ix*iy*wx*wy*wz/L) + 2*ix*iy + ix*iy*iz;
|
||||
// double conv_ops_s = 1e-9 * model_ops / time_conv_s;
|
||||
// double conv_bandwidth_gb_s = 1e-9 * sz_input_bytes / (time_conv_ms / 1000.0);
|
||||
// double conv_bandwidth_gelement_s = 1e-9 * sz_input_elements / (time_conv_ms / 1000.0);
|
||||
//
|
||||
// printf("Execution Time (ms): %f\n", time_conv_ms);
|
||||
// printf("Binary Convolution OPS/s (GOPS/s): %f\n", conv_ops_s);
|
||||
// printf("Binary Convolution Bandwidth (GB/s): %f\n", conv_bandwidth_gb_s);
|
||||
// printf("Binary Convolution Bandwidth (GElements/s): %f\n\n", conv_bandwidth_gelement_s);
|
||||
//
|
||||
// free(binary_input);
|
||||
// free(binary_weights);
|
||||
// free(output);
|
||||
// free(beta);
|
||||
// free(alpha);
|
||||
// free(new_output);
|
||||
// free(new_beta);
|
||||
//
|
||||
// return time_conv_ms;
|
||||
//}
|
||||
|
||||
// double ai2_bin_conv_benchmark(ConvolutionArgs conv_args);
|
||||
|
||||
//void benchmark() {
|
||||
// int ix, iy, iz, wx, wy, wz;
|
||||
// iz = (1 << 9) * BITS_PER_BINARY_WORD;
|
||||
// ix = 227; // x == y for square face
|
||||
// iy = 227;
|
||||
// wx = 3; // x == y for a square face
|
||||
// wy = 3;
|
||||
// wz = iz;
|
||||
//
|
||||
// int runs = 1;
|
||||
// double accum_binary = 0;
|
||||
// double accum_real = 0;
|
||||
// ConvolutionArgs conv_args = initArgs(ix, iy, iz, wx, wy, wz);
|
||||
// for (int i = 0; i < runs; ++i) {
|
||||
// double t_binary_convolve = ai2_bin_conv_benchmark(conv_args);
|
||||
// double t_real_convolve = run_convolve2D_real(conv_args);
|
||||
// printf("t binary = %lf\n", t_binary_convolve);
|
||||
// printf("t real = %lf\n", t_real_convolve);
|
||||
// accum_binary += t_binary_convolve;
|
||||
// accum_real += t_real_convolve;
|
||||
// }
|
||||
//
|
||||
// accum_binary /= runs;
|
||||
// accum_real /= runs;
|
||||
// printf("Average convolution pass binary (ms): %lf\n", accum_binary);
|
||||
// printf("Average convolution pass flt (ms): %lf\n", accum_real);
|
||||
// printf("Speedup (Binary over Real): %lfx\n", accum_real / accum_binary);
|
||||
// exit(1);
|
||||
//}
|
218
src/binary_convolution.h
Normal file
218
src/binary_convolution.h
Normal file
@ -0,0 +1,218 @@
|
||||
#ifndef AI2_BINARY_CONVOLUTION_H
|
||||
#define AI2_BINARY_CONVOLUTION_H
|
||||
|
||||
/** @file binary_convolution.h
|
||||
* @brief Routines related for approximating convolutions using binary operations
|
||||
*
|
||||
* @author Carlo C. del Mundo (carlom)
|
||||
* @date 05/23/2016
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <inttypes.h>
|
||||
#include <assert.h>
|
||||
#include <limits.h>
|
||||
#include <tgmath.h>
|
||||
#include <unistd.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include "common.h"
|
||||
|
||||
typedef struct {
|
||||
int batch; // number of filter batches
|
||||
int c; // channels, z
|
||||
int h; // height, y
|
||||
int w; // width, x
|
||||
int stride;
|
||||
int pad;
|
||||
|
||||
int px; // padded x (use this for striding in padded input and output arrays)
|
||||
int py; // padded y (use this for striding in padded input and output arrays)
|
||||
int wx;
|
||||
int wy;
|
||||
|
||||
float *input; // input values
|
||||
BINARY_WORD *binary_input;
|
||||
|
||||
float *weights; // weight or filter values
|
||||
BINARY_WORD *binary_weights;
|
||||
|
||||
float *output; // output values
|
||||
BINARY_WORD *binary_output;
|
||||
|
||||
float *alpha; // we assume alpha is calculated at the beginning of initialization
|
||||
float *beta; // we assume beta is given to us
|
||||
float *new_beta; // we calculate the new beta for the next layer
|
||||
|
||||
struct ai2_bin_conv_layer *next;
|
||||
} ai2_bin_conv_layer;
|
||||
|
||||
/** @brief Performs a binary convolution using XNOR and POPCOUNT between input and weights
|
||||
*
|
||||
* @param output A 2D real-valued plane to store the outputs
|
||||
* @param input A 2D binary-valued plane that holds the inputs
|
||||
* @param weights A 2D binary-valued plane that holds the weights
|
||||
* @param ix the input's x dimension
|
||||
* @param iy the input's y dimensions
|
||||
* @param wx the weight's x dimension
|
||||
* @param wy the weight's y dimension
|
||||
* @param pad the amount of padding applied to input. (ix+2*pad is the x dimension of the input
|
||||
* @param stride NOP. TODO: implement stride. the stride between sliding windows
|
||||
* @return the count of all overlapping set bits between the two volumes.
|
||||
*/
|
||||
void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride);
|
||||
|
||||
/** @brief Performs a binary dot product (XNOR and POPCOUNT) for two equal sized volumes.
|
||||
*
|
||||
* @param a A 3D binary tensor
|
||||
* @param b A 3D binary tensor
|
||||
* @param vdim the dimensionality of the data. Note: we pack 32 elements in the Z element.
|
||||
* @return the count of all overlapping set bits between the two volumes.
|
||||
*/
|
||||
int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim);
|
||||
|
||||
/** @brief Calculates the alpha plane given an alpha volume.
|
||||
*
|
||||
* Each point in the yz alpha plane
|
||||
* is the average sum of the absolute value of all elements in the z-direction.
|
||||
*
|
||||
* Pre-conditions:
|
||||
* alpha_volume is an array of size x*y*z.
|
||||
* alpha_plane is an array of size x*y.
|
||||
* alpha_volume (x,y,z) is transposed to (z,x,y).
|
||||
*
|
||||
* @param alpha_plane The 2D real-valued output plane
|
||||
* @param alpha_volume The 3D real-valued output volume
|
||||
* @param vdim the dimensionality of alpha_volume.
|
||||
*/
|
||||
void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim);
|
||||
|
||||
/** @brief Wrapper function for generating the beta scaling factor */
|
||||
void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim);
|
||||
|
||||
/** @brief Set the bit in a binary word */
|
||||
void ai2_bitset(BINARY_WORD *bword, unsigned int position);
|
||||
|
||||
/** @brief Checks that the bit is set in a binary word */
|
||||
int ai2_is_set(BINARY_WORD bword, unsigned int position) ;
|
||||
|
||||
/** @brief Converts a 3D float tensor into a 3D binary tensor.
|
||||
*
|
||||
* The value of the ith element in the binary tensor is the sign
|
||||
* of the ith element in the floating tensor.
|
||||
*
|
||||
* @param binary_vol the binary tensor
|
||||
* @param real_vol the real tensor
|
||||
* @param vdim the size of the 3D tensor
|
||||
*/
|
||||
void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 vdim) ;
|
||||
|
||||
/** @brief Converts a 3D binary tensor into a 3D float tensor.
|
||||
*
|
||||
* The ith float element will be '1' if the ith binary element is '1'.
|
||||
* Otherwise, the float element will be '-1'.
|
||||
*
|
||||
* @param real_vol the output real tensor
|
||||
* @param binary_vol the input binary tensor
|
||||
* @param vdim the dimension of both binary_vol and real_vol
|
||||
*/
|
||||
void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 vdim);
|
||||
|
||||
/** @brief Performs a pointwise matrix multication between two 2D tensors
|
||||
* @param output A 2D real-valued plane to store the outputs
|
||||
* @param input A 2D binary-valued plane that holds the inputs
|
||||
* @param N the number of elements between the arrays
|
||||
*/
|
||||
void ai2_pointwise_mul_mm(float *output, const float *input, int N);
|
||||
|
||||
/** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors
|
||||
*
|
||||
* Pre-conditions: wx < ix, and wy < iy
|
||||
*
|
||||
* @param output A 2D real-valued plane of size ix, iy
|
||||
* @param alpha A 2D binary-valued plane of size wx, wy
|
||||
* @param ix the output's x dimension
|
||||
* @param iy the output's y dimensions
|
||||
* @param wx the alpha's x dimension
|
||||
* @param wy the alpha's y dimension
|
||||
* @param pad how many cells are padded, adds 2*pad to the borders of the image
|
||||
*/
|
||||
void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad);
|
||||
|
||||
// --------------------------------------
|
||||
// SETTER FUNCTIONS
|
||||
// --------------------------------------
|
||||
/** @brief Safe function to set the float input of a conv_layer
|
||||
*/
|
||||
void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input);
|
||||
|
||||
/** @brief Safe function to set the binary input of a conv_layer
|
||||
*/
|
||||
void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input);
|
||||
|
||||
/** @brief Safe function to set the binary weights of a conv_layer
|
||||
*/
|
||||
void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights);
|
||||
|
||||
/** @brief Safe function to set the binary weights of a conv_layer
|
||||
*/
|
||||
void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights);
|
||||
|
||||
/** @brief Safe function to set the binary outputs of a conv_layer
|
||||
*/
|
||||
void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output);
|
||||
|
||||
/** @brief Safe function to set the binary outputs of a conv_layer
|
||||
*/
|
||||
void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output);
|
||||
|
||||
/** @brief Safe function to set the alpha of a conv_layer
|
||||
*/
|
||||
void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha);
|
||||
|
||||
/** @brief Safe function to set the beta of a conv_layer
|
||||
*/
|
||||
void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta);
|
||||
|
||||
/** @brief Safe function to set the new_beta of a conv_layer
|
||||
*/
|
||||
void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta);
|
||||
|
||||
// --------------------------------------
|
||||
// GETTER FUNCTIONS
|
||||
// --------------------------------------
|
||||
/** @brief Safe function to get the float outputs of a conv_layer
|
||||
*/
|
||||
float * ai2_getFltOutput(ai2_bin_conv_layer *layer);
|
||||
|
||||
/** @brief 3D tranpose from (x,y,z) to (z,y,x)
|
||||
* @return a new pointer with the transposed matrix
|
||||
*/
|
||||
void ai2_transpose3D(float *data, dim3 d);
|
||||
|
||||
/** @brief Checks if a float is a whole number (e.g., an int)
|
||||
*/
|
||||
int ai2_isFloatWhole(float f);
|
||||
|
||||
/* @brief Allocates all memory objects in an ai2_bin_conv_layer
|
||||
* b - batches (number of filter batches)
|
||||
* c - input channels
|
||||
* ix - input width
|
||||
* iy - input height
|
||||
* wx - weight/filter width
|
||||
* wy - weight/filter height
|
||||
* s - stride between sliding windows
|
||||
* pad - the amount of padding
|
||||
*/
|
||||
ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad);
|
||||
|
||||
/* @brief Safe deallocation of all memory objects in an ai2_bin_conv_layer
|
||||
*/
|
||||
void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer);
|
||||
|
||||
/* @brief Given real-valued filter data and a conv layer, performs a forward pass
|
||||
*/
|
||||
void ai2_bin_forward(ai2_bin_conv_layer *layer);
|
||||
|
||||
#endif
|
81
src/common.c
Normal file
81
src/common.c
Normal file
@ -0,0 +1,81 @@
|
||||
#include "common.h"
|
||||
|
||||
// Returns the time in ms
|
||||
double getElapsedTime(Timer *timer) {
|
||||
// Calculate time it took in seconds
|
||||
double accum_ms = ( timer->requestEnd.tv_sec - timer->requestStart.tv_sec )
|
||||
+ ( timer->requestEnd.tv_nsec - timer->requestStart.tv_nsec )
|
||||
/ 1e6;
|
||||
return accum_ms;
|
||||
}
|
||||
|
||||
void start_timer(Timer *timer) {
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestStart));
|
||||
}
|
||||
|
||||
void stop_timer(Timer *timer) {
|
||||
clock_gettime(CLOCK_MONOTONIC_RAW, &(timer->requestEnd));
|
||||
}
|
||||
|
||||
|
||||
BINARY_WORD * mallocBinaryVolume(dim3 vol) {
|
||||
return (BINARY_WORD *) malloc (vol.x * vol.y * vol.z / BITS_PER_BINARY_WORD * sizeof(BINARY_WORD));
|
||||
}
|
||||
|
||||
float * mallocFloatVolume(dim3 vol) {
|
||||
return (float *) malloc (vol.x * vol.y * vol.z * sizeof(float));
|
||||
}
|
||||
|
||||
// Returns the size (in bytes) of a binary array with dimensions stored in conv_args
|
||||
double getSizeBytesBinaryArray(dim3 conv_args) {
|
||||
return conv_args.x * conv_args.y * conv_args.z * sizeof(BINARY_WORD) / (BITS_PER_BINARY_WORD);
|
||||
}
|
||||
|
||||
|
||||
ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz) {
|
||||
ConvolutionArgs conv_args;
|
||||
// Input Volume
|
||||
conv_args.input.x = ix; // x == y for a square face
|
||||
conv_args.input.y = iy;
|
||||
conv_args.input.z = iz;
|
||||
conv_args.weights.x = wx; // x == y for square face
|
||||
conv_args.weights.y = wy;
|
||||
conv_args.weights.z = wz;
|
||||
|
||||
// <!-- DO NOT MODIFY -->
|
||||
// Intermediate Volumes
|
||||
conv_args.alpha_plane.x = conv_args.weights.x;
|
||||
conv_args.alpha_plane.y = conv_args.weights.y;
|
||||
conv_args.alpha_plane.z = 1;
|
||||
|
||||
conv_args.beta_plane.x = 1;
|
||||
conv_args.beta_plane.y = conv_args.input.y;
|
||||
conv_args.beta_plane.z = conv_args.input.z;
|
||||
|
||||
conv_args.gamma_plane.x = conv_args.input.x * conv_args.weights.x;
|
||||
conv_args.gamma_plane.y = conv_args.input.y * conv_args.weights.y;
|
||||
conv_args.gamma_plane.z = 1;
|
||||
|
||||
conv_args.zeta_plane.x = conv_args.gamma_plane.x;
|
||||
conv_args.zeta_plane.y = conv_args.gamma_plane.y;
|
||||
conv_args.zeta_plane.z = 1;
|
||||
|
||||
// Output Volume
|
||||
conv_args.output.x = conv_args.input.x;
|
||||
conv_args.output.y = conv_args.input.y;
|
||||
conv_args.output.z = 1; // Output should be a 2D plane
|
||||
|
||||
// Verify dimensions
|
||||
//assert(conv_args.weights.x % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
// assert(conv_args.weights.y % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
assert(conv_args.weights.z % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
//assert(conv_args.input.x % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
// assert(conv_args.input.y % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
assert(conv_args.input.z % 32 == 0); // must be divisble by 32 for efficient alignment to unsigned 32-bit ints
|
||||
assert(conv_args.weights.x <= conv_args.input.x);
|
||||
assert(conv_args.weights.y <= conv_args.input.y);
|
||||
assert(conv_args.weights.z <= conv_args.input.z);
|
||||
// <!-- DO NOT MODIFY -->
|
||||
|
||||
return conv_args;
|
||||
}
|
50
src/common.h
Normal file
50
src/common.h
Normal file
@ -0,0 +1,50 @@
|
||||
#ifndef AI2_COMMON_H
|
||||
#define AI2_COMMON_H
|
||||
|
||||
#include <time.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <inttypes.h>
|
||||
#include <assert.h>
|
||||
#include <limits.h>
|
||||
#include <tgmath.h>
|
||||
#include <unistd.h>
|
||||
#include <stdint.h>
|
||||
//#include <gperftools/profiler.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
typedef uint32_t BINARY_WORD;
|
||||
#define BITS_PER_BINARY_WORD (sizeof(BINARY_WORD) * CHAR_BIT)
|
||||
|
||||
typedef struct{
|
||||
struct timespec requestStart;
|
||||
struct timespec requestEnd;
|
||||
} Timer;
|
||||
|
||||
typedef struct {
|
||||
size_t x;
|
||||
size_t y;
|
||||
size_t z;
|
||||
} dim3;
|
||||
|
||||
typedef struct {
|
||||
dim3 weights;
|
||||
dim3 input;
|
||||
dim3 output;
|
||||
dim3 alpha_plane;
|
||||
dim3 beta_plane;
|
||||
dim3 gamma_plane;
|
||||
dim3 zeta_plane;
|
||||
} ConvolutionArgs;
|
||||
|
||||
// Timer stuff
|
||||
double getElapsedTime(Timer *timer); // Returns the time in ms
|
||||
void start_timer(Timer *timer);
|
||||
void stop_timer(Timer *timer);
|
||||
|
||||
BINARY_WORD * mallocBinaryVolume(dim3 vol);
|
||||
float * mallocFloatVolume(dim3 vol);
|
||||
ConvolutionArgs initArgs(size_t ix, size_t iy, size_t iz, size_t wx, size_t wy, size_t wz);
|
||||
double getSizeBytesBinaryArray(dim3 conv_args);
|
||||
|
||||
#endif
|
@ -8,6 +8,10 @@
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
#ifndef AI2
|
||||
#define AI2 0
|
||||
#endif
|
||||
|
||||
void swap_binary(convolutional_layer *l)
|
||||
{
|
||||
float *swap = l->filters;
|
||||
@ -21,24 +25,6 @@ void swap_binary(convolutional_layer *l)
|
||||
#endif
|
||||
}
|
||||
|
||||
void binarize_filters2(float *filters, int n, int size, char *binary, float *scales)
|
||||
{
|
||||
int i, k, f;
|
||||
for(f = 0; f < n; ++f){
|
||||
float mean = 0;
|
||||
for(i = 0; i < size; ++i){
|
||||
mean += fabs(filters[f*size + i]);
|
||||
}
|
||||
mean = mean / size;
|
||||
scales[f] = mean;
|
||||
for(i = 0; i < size/8; ++i){
|
||||
binary[f*size + i] = (filters[f*size + i] > 0) ? 1 : 0;
|
||||
for(k = 0; k < 8; ++k){
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_filters(float *filters, int n, int size, float *binary)
|
||||
{
|
||||
int i, f;
|
||||
@ -54,6 +40,21 @@ void binarize_filters(float *filters, int n, int size, float *binary)
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_input(float *input, int n, int size, float *binary)
|
||||
{
|
||||
int i, s;
|
||||
for(s = 0; s < size; ++s){
|
||||
float mean = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
mean += fabs(input[i*size + s]);
|
||||
}
|
||||
mean = mean / n;
|
||||
for(i = 0; i < n; ++i){
|
||||
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int convolutional_out_height(convolutional_layer l)
|
||||
{
|
||||
int h = l.h;
|
||||
@ -89,7 +90,7 @@ image get_convolutional_delta(convolutional_layer l)
|
||||
}
|
||||
|
||||
size_t get_workspace_size(layer l){
|
||||
#ifdef CUDNN
|
||||
#ifdef CUDNN
|
||||
size_t most = 0;
|
||||
size_t s = 0;
|
||||
cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
|
||||
@ -117,9 +118,9 @@ size_t get_workspace_size(layer l){
|
||||
&s);
|
||||
if (s > most) most = s;
|
||||
return most;
|
||||
#else
|
||||
#else
|
||||
return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize, int binary, int xnor)
|
||||
@ -133,6 +134,7 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.binary = binary;
|
||||
l.xnor = xnor;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
@ -164,6 +166,10 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.cfilters = calloc(c*n*size*size, sizeof(char));
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
}
|
||||
if(xnor){
|
||||
l.binary_filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
@ -199,7 +205,6 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.binary_filters_gpu = cuda_make_array(l.filters, c*n*size*size);
|
||||
l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
|
||||
}
|
||||
l.xnor = xnor;
|
||||
|
||||
if(batch_normalize){
|
||||
l.mean_gpu = cuda_make_array(l.mean, n);
|
||||
@ -325,7 +330,7 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
|
||||
l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n);
|
||||
l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n);
|
||||
#ifdef CUDNN
|
||||
#ifdef CUDNN
|
||||
cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w);
|
||||
cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w);
|
||||
cudnnSetFilter4dDescriptor(l->dfilterDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size);
|
||||
@ -359,7 +364,7 @@ void resize_convolutional_layer(convolutional_layer *l, int w, int h)
|
||||
CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST,
|
||||
0,
|
||||
&l->bf_algo);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
l->workspace_size = get_workspace_size(*l);
|
||||
}
|
||||
@ -404,7 +409,9 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
int out_w = convolutional_out_width(l);
|
||||
int i;
|
||||
|
||||
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
|
||||
/*
|
||||
if(l.binary){
|
||||
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
|
||||
@ -413,44 +420,59 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
if(l.binary){
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
/*
|
||||
if(l.binary){
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
char *a = l.cfilters;
|
||||
char *a = l.cfilters;
|
||||
float *b = state.workspace;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm_bin(m,n,k,1,a,k,b,n,c,n);
|
||||
c += n*m;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
|
||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
if(l.xnor && (l.c%32 != 0 || !AI2)){
|
||||
binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
|
||||
swap_binary(&l);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
binarize_input(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input + i*l.inputs);
|
||||
}
|
||||
state.input = l.binary_input;
|
||||
}
|
||||
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
if (l.xnor && l.c%32 == 0 && AI2) {
|
||||
forward_xnor_layer(l, state);
|
||||
printf("xnor\n");
|
||||
} else {
|
||||
|
||||
float *a = l.filters;
|
||||
float *b = state.workspace;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm_bin(m,n,k,1,a,k,b,n,c,n);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
c += n*m;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w);
|
||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
return;
|
||||
}
|
||||
*/
|
||||
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = out_h*out_w;
|
||||
|
||||
float *a = l.filters;
|
||||
float *b = state.workspace;
|
||||
float *c = l.output;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_cpu(state.input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
c += n*m;
|
||||
state.input += l.c*l.h*l.w;
|
||||
}
|
||||
|
||||
if(l.batch_normalize){
|
||||
@ -459,6 +481,7 @@ void forward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
|
||||
|
||||
activate_array(l.output, m*n*l.batch, l.activation);
|
||||
if(l.binary || l.xnor) swap_binary(&l);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer l, network_state state)
|
||||
|
@ -167,6 +167,8 @@ struct layer{
|
||||
float *r_cpu;
|
||||
float *h_cpu;
|
||||
|
||||
float *binary_input;
|
||||
|
||||
size_t workspace_size;
|
||||
|
||||
#ifdef GPU
|
||||
|
@ -1021,7 +1021,6 @@ void load_convolutional_weights_binary(layer l, FILE *fp)
|
||||
}
|
||||
}
|
||||
}
|
||||
binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(l);
|
||||
@ -1046,7 +1045,7 @@ void load_convolutional_weights(layer l, FILE *fp)
|
||||
if (l.flipped) {
|
||||
transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
|
||||
}
|
||||
if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
|
||||
//if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
|
||||
#ifdef GPU
|
||||
if(gpu_index >= 0){
|
||||
push_convolutional_layer(l);
|
||||
|
86
src/xnor_layer.c
Normal file
86
src/xnor_layer.c
Normal file
@ -0,0 +1,86 @@
|
||||
#include "xnor_layer.h"
|
||||
#include "binary_convolution.h"
|
||||
#include "convolutional_layer.h"
|
||||
|
||||
layer make_xnor_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalize)
|
||||
{
|
||||
int i;
|
||||
layer l = {0};
|
||||
l.type = XNOR;
|
||||
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
l.pad = pad;
|
||||
l.batch_normalize = batch_normalize;
|
||||
|
||||
l.filters = calloc(c*n*size*size, sizeof(float));
|
||||
l.biases = calloc(n, sizeof(float));
|
||||
|
||||
int out_h = convolutional_out_height(l);
|
||||
int out_w = convolutional_out_width(l);
|
||||
l.out_h = out_h;
|
||||
l.out_w = out_w;
|
||||
l.out_c = n;
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(n, sizeof(float));
|
||||
for(i = 0; i < n; ++i){
|
||||
l.scales[i] = 1;
|
||||
}
|
||||
|
||||
l.mean = calloc(n, sizeof(float));
|
||||
l.variance = calloc(n, sizeof(float));
|
||||
|
||||
l.rolling_mean = calloc(n, sizeof(float));
|
||||
l.rolling_variance = calloc(n, sizeof(float));
|
||||
}
|
||||
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "XNOR Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
void forward_xnor_layer(const layer l, network_state state)
|
||||
{
|
||||
int b = l.n;
|
||||
int c = l.c;
|
||||
int ix = l.w;
|
||||
int iy = l.h;
|
||||
int wx = l.size;
|
||||
int wy = l.size;
|
||||
int s = l.stride;
|
||||
int pad = l.pad * (l.size/2);
|
||||
|
||||
// MANDATORY: Make the binary layer
|
||||
ai2_bin_conv_layer al = ai2_make_bin_conv_layer(b, c, ix, iy, wx, wy, s, pad);
|
||||
|
||||
// OPTIONAL: You need to set the real-valued input like:
|
||||
ai2_setFltInput(&al, state.input);
|
||||
// The above function will automatically binarize the input for the layer (channel wise).
|
||||
// If commented: using the default 0-valued input.
|
||||
|
||||
ai2_setFltWeights(&al, l.filters);
|
||||
// The above function will automatically binarize the input for the layer (channel wise).
|
||||
// If commented: using the default 0-valued weights.
|
||||
|
||||
// MANDATORY: Call forward
|
||||
ai2_bin_forward(&al);
|
||||
|
||||
// OPTIONAL: Inspect outputs
|
||||
float *output = ai2_getFltOutput(&al); // output is of size l.px * l.py where px and py are the padded outputs
|
||||
|
||||
memcpy(l.output, output, l.outputs*sizeof(float));
|
||||
// MANDATORY: Free layer
|
||||
ai2_free_bin_conv_layer(&al);
|
||||
}
|
11
src/xnor_layer.h
Normal file
11
src/xnor_layer.h
Normal file
@ -0,0 +1,11 @@
|
||||
#ifndef XNOR_LAYER_H
|
||||
#define XNOR_LAYER_H
|
||||
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
layer make_xnor_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation, int batch_normalization);
|
||||
void forward_xnor_layer(const layer l, network_state state);
|
||||
|
||||
#endif
|
||||
|
@ -346,8 +346,8 @@ void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
//draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
|
||||
show_image(im, "predictions");
|
||||
save_image(im, "predictions");
|
||||
show_image(im, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
free_image(im);
|
||||
|
Loading…
Reference in New Issue
Block a user