mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
lots of stuff
This commit is contained in:
@ -12,6 +12,21 @@ extern "C" {
|
||||
#include "cuda.h"
|
||||
}
|
||||
|
||||
__global__ void binarize_filters_kernel(float *filters, int n, int size, float *binary)
|
||||
{
|
||||
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (f >= n) return;
|
||||
int i = 0;
|
||||
float mean = 0;
|
||||
for(i = 0; i < size; ++i){
|
||||
mean += abs(filters[f*size + i]);
|
||||
}
|
||||
mean = mean / size;
|
||||
for(i = 0; i < size; ++i){
|
||||
binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void scale_bias_kernel(float *output, float *biases, int n, int size)
|
||||
{
|
||||
int offset = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
@ -50,6 +65,12 @@ __global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, in
|
||||
}
|
||||
}
|
||||
|
||||
void binarize_filters_gpu(float *filters, int n, int size, float *mean)
|
||||
{
|
||||
binarize_filters_kernel<<<cuda_gridsize(n), BLOCK>>>(filters, n, size, mean);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
|
||||
{
|
||||
backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates);
|
||||
@ -100,6 +121,13 @@ void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
void swap_binary(convolutional_layer l)
|
||||
{
|
||||
float *swap = l.filters_gpu;
|
||||
l.filters_gpu = l.binary_filters_gpu;
|
||||
l.binary_filters_gpu = swap;
|
||||
}
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
int i;
|
||||
@ -109,6 +137,11 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
convolutional_out_width(l);
|
||||
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
if(l.binary){
|
||||
binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
|
||||
swap_binary(l);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
float * a = l.filters_gpu;
|
||||
@ -122,12 +155,6 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.mean_gpu);
|
||||
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.variance_gpu);
|
||||
|
||||
/*
|
||||
cuda_pull_array(l.variance_gpu, l.mean, 1);
|
||||
printf("%f\n", l.mean[0]);
|
||||
*/
|
||||
|
||||
|
||||
scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1);
|
||||
axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
|
||||
scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1);
|
||||
@ -145,6 +172,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
|
||||
|
||||
activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
|
||||
if(l.binary) swap_binary(l);
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
@ -178,6 +206,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
|
||||
|
||||
if(state.delta){
|
||||
if(l.binary) swap_binary(l);
|
||||
float * a = l.filters_gpu;
|
||||
float * b = l.delta_gpu;
|
||||
float * c = l.col_image_gpu;
|
||||
@ -185,6 +214,7 @@ void backward_convolutional_layer_gpu(convolutional_layer l, network_state state
|
||||
gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
|
||||
|
||||
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
|
||||
if(l.binary) swap_binary(l);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user