mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added Focal Loss to yolo-layer
This commit is contained in:
@ -109,18 +109,40 @@ float delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i
|
||||
}
|
||||
|
||||
|
||||
void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat)
|
||||
void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss)
|
||||
{
|
||||
int n;
|
||||
if (delta[index]){
|
||||
delta[index + stride*class] = 1 - output[index + stride*class];
|
||||
if(avg_cat) *avg_cat += output[index + stride*class];
|
||||
delta[index + stride*class_id] = 1 - output[index + stride*class_id];
|
||||
if(avg_cat) *avg_cat += output[index + stride*class_id];
|
||||
return;
|
||||
}
|
||||
for(n = 0; n < classes; ++n){
|
||||
delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n];
|
||||
if(n == class && avg_cat) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
// Focal loss
|
||||
if (focal_loss) {
|
||||
// Focal Loss
|
||||
float alpha = 0.5; // 0.25 or 0.5
|
||||
//float gamma = 2; // hardcoded in many places of the grad-formula
|
||||
|
||||
int ti = index + stride*class_id;
|
||||
float pt = output[ti] + 0.000000000000001F;
|
||||
//float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
|
||||
float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
|
||||
|
||||
for (n = 0; n < classes; ++n) {
|
||||
delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
|
||||
|
||||
delta[index + stride*n] *= alpha*grad;
|
||||
|
||||
if (n == class_id) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
}
|
||||
else {
|
||||
// default
|
||||
for (n = 0; n < classes; ++n) {
|
||||
delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n];
|
||||
if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int entry_index(layer l, int batch, int location, int entry)
|
||||
@ -196,7 +218,7 @@ void forward_yolo_layer(const layer l, network_state state)
|
||||
int class = state.truth[best_t*(4 + 1) + b*l.truths + 4];
|
||||
if (l.map) class = l.map[class];
|
||||
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss);
|
||||
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
|
||||
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
|
||||
}
|
||||
@ -236,7 +258,7 @@ void forward_yolo_layer(const layer l, network_state state)
|
||||
int class = state.truth[t*(4 + 1) + b*l.truths + 4];
|
||||
if (l.map) class = l.map[class];
|
||||
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss);
|
||||
|
||||
++count;
|
||||
++class_count;
|
||||
|
Reference in New Issue
Block a user