mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added Focal Loss to yolo-layer
This commit is contained in:
@ -757,7 +757,7 @@ void fuse_conv_batchnorm(network net)
|
||||
layer *l = &net.layers[j];
|
||||
|
||||
if (l->type == CONVOLUTIONAL) {
|
||||
printf(" Fuse Convolutional layer \t\t l->size = %d \n", l->size);
|
||||
//printf(" Merges Convolutional-%d and batch_norm \n", j);
|
||||
|
||||
if (l->batch_normalize) {
|
||||
int f;
|
||||
@ -783,7 +783,7 @@ void fuse_conv_batchnorm(network net)
|
||||
}
|
||||
}
|
||||
else {
|
||||
printf(" Skip layer: %d \n", l->type);
|
||||
//printf(" Fusion skip layer type: %d \n", l->type);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -39,6 +39,7 @@ extern "C" {
|
||||
float * get_network_output_gpu_layer(network net, int i);
|
||||
float * get_network_delta_gpu_layer(network net, int i);
|
||||
float * get_network_output_gpu(network net);
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
||||
void forward_network_gpu(network net, network_state state)
|
||||
{
|
||||
@ -54,6 +55,21 @@ void forward_network_gpu(network net, network_state state)
|
||||
if(net.wait_stream)
|
||||
cudaStreamSynchronize(get_cuda_stream());
|
||||
state.input = l.output_gpu;
|
||||
/*
|
||||
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
|
||||
if (l.out_w >= 0 && l.out_h >= 1 && l.c >= 3) {
|
||||
int j;
|
||||
for (j = 0; j < l.out_c; ++j) {
|
||||
image img = make_image(l.out_w, l.out_h, 3);
|
||||
memcpy(img.data, l.output+ l.out_w*l.out_h*j, l.out_w*l.out_h * 1 * sizeof(float));
|
||||
char buff[256];
|
||||
sprintf(buff, "layer-%d slice-%d", i, j);
|
||||
show_image(img, buff);
|
||||
}
|
||||
cvWaitKey(0); // wait press-key in console
|
||||
cvDestroyAllWindows();
|
||||
}
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -274,6 +274,7 @@ layer parse_yolo(list *options, size_params params)
|
||||
|
||||
//l.max_boxes = option_find_int_quiet(options, "max", 90);
|
||||
l.jitter = option_find_float(options, "jitter", .2);
|
||||
l.focal_loss = option_find_int_quiet(options, "focal_loss", 0);
|
||||
|
||||
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5);
|
||||
l.truth_thresh = option_find_float(options, "truth_thresh", 1);
|
||||
|
@ -109,18 +109,40 @@ float delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i
|
||||
}
|
||||
|
||||
|
||||
void delta_yolo_class(float *output, float *delta, int index, int class, int classes, int stride, float *avg_cat)
|
||||
void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss)
|
||||
{
|
||||
int n;
|
||||
if (delta[index]){
|
||||
delta[index + stride*class] = 1 - output[index + stride*class];
|
||||
if(avg_cat) *avg_cat += output[index + stride*class];
|
||||
delta[index + stride*class_id] = 1 - output[index + stride*class_id];
|
||||
if(avg_cat) *avg_cat += output[index + stride*class_id];
|
||||
return;
|
||||
}
|
||||
for(n = 0; n < classes; ++n){
|
||||
delta[index + stride*n] = ((n == class)?1 : 0) - output[index + stride*n];
|
||||
if(n == class && avg_cat) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
// Focal loss
|
||||
if (focal_loss) {
|
||||
// Focal Loss
|
||||
float alpha = 0.5; // 0.25 or 0.5
|
||||
//float gamma = 2; // hardcoded in many places of the grad-formula
|
||||
|
||||
int ti = index + stride*class_id;
|
||||
float pt = output[ti] + 0.000000000000001F;
|
||||
//float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
|
||||
float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
|
||||
|
||||
for (n = 0; n < classes; ++n) {
|
||||
delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
|
||||
|
||||
delta[index + stride*n] *= alpha*grad;
|
||||
|
||||
if (n == class_id) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
}
|
||||
else {
|
||||
// default
|
||||
for (n = 0; n < classes; ++n) {
|
||||
delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n];
|
||||
if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static int entry_index(layer l, int batch, int location, int entry)
|
||||
@ -196,7 +218,7 @@ void forward_yolo_layer(const layer l, network_state state)
|
||||
int class = state.truth[best_t*(4 + 1) + b*l.truths + 4];
|
||||
if (l.map) class = l.map[class];
|
||||
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss);
|
||||
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
|
||||
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h);
|
||||
}
|
||||
@ -236,7 +258,7 @@ void forward_yolo_layer(const layer l, network_state state)
|
||||
int class = state.truth[t*(4 + 1) + b*l.truths + 4];
|
||||
if (l.map) class = l.map[class];
|
||||
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat);
|
||||
delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss);
|
||||
|
||||
++count;
|
||||
++class_count;
|
||||
|
@ -69,6 +69,7 @@ YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_file
|
||||
}
|
||||
set_batch_network(&net, 1);
|
||||
net.gpu_index = cur_gpu_id;
|
||||
fuse_conv_batchnorm(net);
|
||||
|
||||
layer l = net.layers[net.n - 1];
|
||||
int j;
|
||||
|
Reference in New Issue
Block a user