mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixing up maxpool layer
This commit is contained in:
@ -24,7 +24,8 @@ network make_network(int n, int batch)
|
||||
net.outputs = 0;
|
||||
net.output = 0;
|
||||
#ifdef GPU
|
||||
net.input_cl = 0;
|
||||
net.input_cl = calloc(1, sizeof(cl_mem));
|
||||
net.truth_cl = calloc(1, sizeof(cl_mem));
|
||||
#endif
|
||||
return net;
|
||||
}
|
||||
@ -43,12 +44,12 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
forward_cost_layer_gpu(layer, input, truth);
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
forward_connected_layer(layer, input, train);
|
||||
input = layer.output;
|
||||
forward_connected_layer_gpu(layer, input);
|
||||
input = layer.output_cl;
|
||||
}
|
||||
/*
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
||||
forward_softmax_layer(layer, input);
|
||||
@ -94,6 +95,10 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
cost_layer layer = *(cost_layer *)net.layers[i];
|
||||
backward_cost_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
backward_connected_layer_gpu(layer, prev_input, prev_delta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -105,18 +110,9 @@ void update_network_gpu(network net)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
update_convolutional_layer_gpu(layer);
|
||||
}
|
||||
else if(net.types[i] == MAXPOOL){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == SOFTMAX){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == NORMALIZATION){
|
||||
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
update_connected_layer(layer);
|
||||
update_connected_layer_gpu(layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -127,6 +123,10 @@ cl_mem get_network_output_cl_layer(network net, int i)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.output_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -136,6 +136,10 @@ cl_mem get_network_delta_cl_layer(network net, int i)
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
else if(net.types[i] == CONNECTED){
|
||||
connected_layer layer = *(connected_layer *)net.layers[i];
|
||||
return layer.delta_cl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -347,6 +351,46 @@ void backward_network(network net, float *input)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
float train_network_datum_gpu(network net, float *x, float *y)
|
||||
{
|
||||
int x_size = get_network_input_size(net)*net.batch;
|
||||
int y_size = get_network_output_size(net)*net.batch;
|
||||
if(!*net.input_cl){
|
||||
*net.input_cl = cl_make_array(x, x_size);
|
||||
*net.truth_cl = cl_make_array(y, y_size);
|
||||
}else{
|
||||
cl_write_array(*net.input_cl, x, x_size);
|
||||
cl_write_array(*net.truth_cl, y, y_size);
|
||||
}
|
||||
forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
|
||||
//int class = get_predicted_class_network(net);
|
||||
backward_network_gpu(net, *net.input_cl);
|
||||
float error = get_network_cost(net);
|
||||
update_network_gpu(net);
|
||||
//return (y[class]?1:0);
|
||||
return error;
|
||||
}
|
||||
float train_network_sgd_gpu(network net, data d, int n)
|
||||
{
|
||||
int batch = net.batch;
|
||||
float *X = calloc(batch*d.X.cols, sizeof(float));
|
||||
float *y = calloc(batch*d.y.cols, sizeof(float));
|
||||
|
||||
int i;
|
||||
float sum = 0;
|
||||
for(i = 0; i < n; ++i){
|
||||
get_batch(d, batch, X, y);
|
||||
float err = train_network_datum_gpu(net, X, y);
|
||||
sum += err;
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return (float)sum/(n*batch);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
float train_network_datum(network net, float *x, float *y)
|
||||
{
|
||||
forward_network(net, x, y, 1);
|
||||
|
Reference in New Issue
Block a user