mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
changes to detection
This commit is contained in:
parent
43552b6d20
commit
9db618329a
@ -7,7 +7,6 @@ channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen=0
|
||||
|
||||
[crop]
|
||||
crop_height=224
|
||||
|
@ -7,7 +7,6 @@ channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen=0
|
||||
|
||||
[convolutional]
|
||||
filters=32
|
||||
|
@ -7,7 +7,6 @@ channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen=0
|
||||
|
||||
[crop]
|
||||
crop_height=224
|
||||
|
@ -6,7 +6,6 @@ width=256
|
||||
channels=3
|
||||
learning_rate=0.00001
|
||||
momentum=0.9
|
||||
seen=0
|
||||
decay=0.0005
|
||||
|
||||
[crop]
|
||||
|
@ -6,7 +6,6 @@ height=224
|
||||
channels=3
|
||||
learning_rate=0.00001
|
||||
momentum=0.9
|
||||
seen=0
|
||||
decay=0.0005
|
||||
|
||||
[convolutional]
|
||||
|
@ -7,7 +7,6 @@ channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen = 0
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
|
@ -7,7 +7,6 @@ channels=3
|
||||
learning_rate=0.01
|
||||
momentum=0.9
|
||||
decay=0.0005
|
||||
seen = 0
|
||||
|
||||
[crop]
|
||||
crop_width=448
|
||||
@ -200,6 +199,6 @@ activation=logistic
|
||||
classes=20
|
||||
coords=4
|
||||
rescore=0
|
||||
joint=1
|
||||
objectness = 0
|
||||
background=0
|
||||
joint=0
|
||||
objectness=1
|
||||
|
||||
|
@ -140,7 +140,7 @@ void randomize_boxes(box_label *b, int n)
|
||||
|
||||
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
|
||||
{
|
||||
char *labelpath = find_replace(path, "detection_images", "labels");
|
||||
char *labelpath = find_replace(path, "JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
labelpath = find_replace(labelpath, ".JPEG", ".txt");
|
||||
int count = 0;
|
||||
|
@ -8,20 +8,22 @@
|
||||
|
||||
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
||||
|
||||
void draw_detection(image im, float *box, int side, char *label)
|
||||
void draw_detection(image im, float *box, int side, int objectness, char *label)
|
||||
{
|
||||
int classes = 20;
|
||||
int elems = 4+classes;
|
||||
int elems = 4+classes+objectness;
|
||||
int j;
|
||||
int r, c;
|
||||
|
||||
for(r = 0; r < side; ++r){
|
||||
for(c = 0; c < side; ++c){
|
||||
j = (r*side + c) * elems;
|
||||
float scale = 1;
|
||||
if(objectness) scale = 1 - box[j++];
|
||||
int class = max_index(box+j, classes);
|
||||
if(box[j+class] > 0.2){
|
||||
if(scale * box[j+class] > 0.2){
|
||||
int width = box[j+class]*5 + 1;
|
||||
printf("%f %s\n", box[j+class], class_names[class]);
|
||||
printf("%f %s\n", scale * box[j+class], class_names[class]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
@ -51,7 +53,6 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
{
|
||||
srand(time(0));
|
||||
data_seed = time(0);
|
||||
int imgnet = 0;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
float avg_loss = -1;
|
||||
@ -66,49 +67,45 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
data train, buffer;
|
||||
|
||||
int classes = layer.classes;
|
||||
int background = (layer.background || layer.objectness);
|
||||
printf("%d\n", background);
|
||||
int background = layer.objectness;
|
||||
int side = sqrt(get_detection_layer_locations(layer));
|
||||
|
||||
char **paths;
|
||||
list *plist;
|
||||
if (imgnet){
|
||||
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
|
||||
}else{
|
||||
//plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
|
||||
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
|
||||
plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
|
||||
}
|
||||
list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt");
|
||||
int N = plist->size;
|
||||
|
||||
paths = (char **)list_to_array(plist);
|
||||
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
clock_t time;
|
||||
while(1){
|
||||
while(i*imgs < N*120){
|
||||
i += 1;
|
||||
time=clock();
|
||||
pthread_join(load_thread, 0);
|
||||
train = buffer;
|
||||
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
||||
|
||||
/*
|
||||
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
||||
image copy = copy_image(im);
|
||||
draw_detection(copy, train.y.vals[114], 7, "truth");
|
||||
cvWaitKey(0);
|
||||
free_image(copy);
|
||||
*/
|
||||
|
||||
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
net.seen += imgs;
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
if(i == 100){
|
||||
if((i-1)*imgs <= N && i*imgs > N){
|
||||
fprintf(stderr, "Starting second stage...\n");
|
||||
net.learning_rate *= 10;
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if((i-1)*imgs <= 80*N && i*imgs > N*80){
|
||||
fprintf(stderr, "Second stage done.\n");
|
||||
net.learning_rate *= .1;
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base);
|
||||
save_weights(net, buff);
|
||||
return;
|
||||
}
|
||||
if(i%1000==0){
|
||||
char buff[256];
|
||||
@ -117,6 +114,9 @@ void train_detection(char *cfgfile, char *weightfile)
|
||||
}
|
||||
free_data(train);
|
||||
}
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
|
||||
void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
|
||||
@ -174,7 +174,7 @@ void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_b
|
||||
if (ymin < 0) ymin = 0;
|
||||
if (xmax > w) xmax = w;
|
||||
if (ymax > h) ymax = h;
|
||||
|
||||
|
||||
for(j = 0; j < classes; ++j){
|
||||
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
||||
xmin, ymin, xmax, ymax);
|
||||
@ -267,8 +267,6 @@ void test_detection(char *cfgfile, char *weightfile, char *filename)
|
||||
load_weights(&net, weightfile);
|
||||
}
|
||||
detection_layer layer = get_network_detection_layer(net);
|
||||
if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
|
||||
int im_size = 448;
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
clock_t time;
|
||||
@ -283,12 +281,12 @@ void test_detection(char *cfgfile, char *weightfile, char *filename)
|
||||
strtok(input, "\n");
|
||||
}
|
||||
image im = load_image_color(input,0,0);
|
||||
image sized = resize_image(im, im_size, im_size);
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
float *X = sized.data;
|
||||
time=clock();
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
draw_detection(im, predictions, 7, "predictions");
|
||||
draw_detection(im, predictions, 7, layer.objectness, "predictions");
|
||||
free_image(im);
|
||||
free_image(sized);
|
||||
#ifdef OPENCV
|
||||
|
@ -167,7 +167,7 @@ detection_layer parse_detection(list *options, size_params params)
|
||||
int rescore = option_find_int(options, "rescore", 0);
|
||||
int joint = option_find_int(options, "joint", 0);
|
||||
int objectness = option_find_int(options, "objectness", 0);
|
||||
int background = option_find_int(options, "background", 0);
|
||||
int background = 0;
|
||||
detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
|
||||
return layer;
|
||||
}
|
||||
@ -295,7 +295,6 @@ void parse_net_options(list *options, network *net)
|
||||
net->learning_rate = option_find_float(options, "learning_rate", .001);
|
||||
net->momentum = option_find_float(options, "momentum", .9);
|
||||
net->decay = option_find_float(options, "decay", .0001);
|
||||
net->seen = option_find_int(options, "seen",0);
|
||||
int subdivs = option_find_int(options, "subdivisions",1);
|
||||
net->batch /= subdivs;
|
||||
net->subdivisions = subdivs;
|
||||
|
Loading…
Reference in New Issue
Block a user