mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
sides of box instead of coords
This commit is contained in:
parent
6553b3f0e3
commit
ad59d7e68e
87
src/data.c
87
src/data.c
@ -16,6 +16,7 @@ struct load_args{
|
||||
int w;
|
||||
int nh;
|
||||
int nw;
|
||||
int num_boxes;
|
||||
int jitter;
|
||||
int classes;
|
||||
int background;
|
||||
@ -106,56 +107,62 @@ void randomize_boxes(box *b, int n)
|
||||
}
|
||||
}
|
||||
|
||||
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip, int background)
|
||||
void fill_truth_detection(char *path, float *truth, int classes, int num_boxes, int flip, int background, float dx, float dy, float sx, float sy)
|
||||
{
|
||||
int box_height = height/num_height;
|
||||
int box_width = width/num_width;
|
||||
char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
|
||||
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
||||
int count = 0;
|
||||
box *boxes = read_boxes(labelpath, &count);
|
||||
randomize_boxes(boxes, count);
|
||||
float x, y, h, w;
|
||||
float l,r,t,b;
|
||||
int id;
|
||||
int i;
|
||||
if(background){
|
||||
for(i = 0; i < num_height*num_width*(4+classes+background); i += 4+classes+background){
|
||||
for(i = 0; i < num_boxes*num_boxes*(4+classes+background); i += 4+classes+background){
|
||||
truth[i] = 1;
|
||||
}
|
||||
}
|
||||
for(i = 0; i < count; ++i){
|
||||
x = boxes[i].x;
|
||||
y = boxes[i].y;
|
||||
w = boxes[i].w;
|
||||
h = boxes[i].h;
|
||||
l = boxes[i].left;
|
||||
r = boxes[i].right;
|
||||
t = boxes[i].top;
|
||||
b = boxes[i].bottom;
|
||||
id = boxes[i].id;
|
||||
if(flip) x = 1-x;
|
||||
x *= width + jitter;
|
||||
y *= height + jitter;
|
||||
x -= dx;
|
||||
y -= dy;
|
||||
int i = x/box_width;
|
||||
int j = y/box_height;
|
||||
|
||||
if(i < 0) i = 0;
|
||||
if(i >= num_width) i = num_width-1;
|
||||
if(j < 0) j = 0;
|
||||
if(j >= num_height) j = num_height-1;
|
||||
if(flip){
|
||||
float left = l;
|
||||
float right = r;
|
||||
r = 1-left;
|
||||
l = 1-right;
|
||||
}
|
||||
|
||||
l = l*sx-dx;
|
||||
r = r*sx-dx;
|
||||
t = t*sy-dy;
|
||||
b = b*sy-dy;
|
||||
|
||||
float dw = constrain(0,1, (x - i*box_width)/box_width );
|
||||
float dh = constrain(0,1, (y - j*box_height)/box_height );
|
||||
float th = constrain(0,1, h*(height+jitter)/height );
|
||||
float tw = constrain(0,1, w*(width+jitter)/width );
|
||||
float x = (l+r)/2.;
|
||||
float y = (t+b)/2.;
|
||||
|
||||
int index = (i+j*num_width)*(4+classes+background);
|
||||
if (x < 0 || x >= 1 || y < 0 || y >= 1) continue;
|
||||
|
||||
int i = (int)(x*num_boxes);
|
||||
int j = (int)(y*num_boxes);
|
||||
|
||||
l = constrain(0, 1, l);
|
||||
r = constrain(0, 1, r);
|
||||
t = constrain(0, 1, t);
|
||||
b = constrain(0, 1, b);
|
||||
|
||||
int index = (i+j*num_boxes)*(4+classes+background);
|
||||
if(truth[index+classes+background+2]) continue;
|
||||
if(background) truth[index++] = 0;
|
||||
truth[index+id] = 1;
|
||||
index += classes;
|
||||
truth[index++] = dh;
|
||||
truth[index++] = dw;
|
||||
truth[index++] = th;
|
||||
truth[index++] = tw;
|
||||
truth[index++] = l;
|
||||
truth[index++] = r;
|
||||
truth[index++] = t;
|
||||
truth[index++] = b;
|
||||
}
|
||||
free(boxes);
|
||||
}
|
||||
@ -272,23 +279,30 @@ void free_data(data d)
|
||||
}
|
||||
}
|
||||
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background)
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int jitter, int background)
|
||||
{
|
||||
char **random_paths = get_random_paths(paths, n, m);
|
||||
int i;
|
||||
data d;
|
||||
d.shallow = 0;
|
||||
d.X = load_image_paths(random_paths, n, h, w);
|
||||
int k = nh*nw*(4+classes+background);
|
||||
int k = num_boxes*num_boxes*(4+classes+background);
|
||||
d.y = make_matrix(n, k);
|
||||
for(i = 0; i < n; ++i){
|
||||
int dx = rand()%jitter;
|
||||
int dy = rand()%jitter;
|
||||
int px = rand()%jitter;
|
||||
px = 0;
|
||||
int py = rand()%jitter;
|
||||
py = 0;
|
||||
float sy = (float) h / (h-jitter);
|
||||
float sx = (float) w / (w-jitter);
|
||||
float dy = (float) py / (h-jitter);
|
||||
float dx = (float) px / (w-jitter);
|
||||
|
||||
int flip = rand()%2;
|
||||
fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip, background);
|
||||
fill_truth_detection(random_paths[i], d.y.vals[i], classes, num_boxes, flip, background, dx, dy, sx, sy);
|
||||
image a = float_to_image(h, w, 3, d.X.vals[i]);
|
||||
if(flip) flip_image(a);
|
||||
jitter_image(a,h-jitter,w-jitter,dy,dx);
|
||||
jitter_image(a, h-jitter, w-jitter, py, px);
|
||||
}
|
||||
d.X.cols = (h-jitter)*(w-jitter)*3;
|
||||
free(random_paths);
|
||||
@ -299,7 +313,7 @@ void *load_detection_thread(void *ptr)
|
||||
{
|
||||
printf("Loading data: %d\n", rand());
|
||||
struct load_args a = *(struct load_args*)ptr;
|
||||
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter, a.background);
|
||||
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.num_boxes, a.jitter, a.background);
|
||||
translate_data_rows(*a.d, -128);
|
||||
scale_data_rows(*a.d, 1./128);
|
||||
free(ptr);
|
||||
@ -317,6 +331,7 @@ pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, in
|
||||
args->w = w;
|
||||
args->nh = nh;
|
||||
args->nw = nw;
|
||||
args->num_boxes = nw;
|
||||
args->classes = classes;
|
||||
args->jitter = jitter;
|
||||
args->background = background;
|
||||
|
@ -21,7 +21,7 @@ data load_data(char **paths, int n, int m, char **labels, int k, int h, int w);
|
||||
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d);
|
||||
|
||||
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d);
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background);
|
||||
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int num_boxes, int jitter, int background);
|
||||
|
||||
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w);
|
||||
data load_cifar10_data(char *filename);
|
||||
|
@ -27,12 +27,11 @@ void draw_detection(image im, float *box, int side)
|
||||
float blue = get_color(2,class,classes);
|
||||
|
||||
j += classes;
|
||||
int d = im.w/side;
|
||||
int y = r*d+box[j]*d;
|
||||
int x = c*d+box[j+1]*d;
|
||||
int h = box[j+2]*im.h;
|
||||
int w = box[j+3]*im.w;
|
||||
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
|
||||
int left = box[j] *im.w;
|
||||
int right = box[j+1]*im.w;
|
||||
int top = box[j+2]*im.h;
|
||||
int bot = box[j+3]*im.h;
|
||||
draw_box(im, left, top, right, bot, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -138,17 +137,14 @@ void validate_detection(char *cfgfile, char *weightfile)
|
||||
for(j = 0; j < pred.rows; ++j){
|
||||
for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
|
||||
float scale = 1.;
|
||||
if(nuisance) scale = 1.-pred.vals[j][k];
|
||||
for(class = 0; class < classes; ++class){
|
||||
int index = (k)/(classes+4+background+nuisance);
|
||||
int r = index/7;
|
||||
int c = index%7;
|
||||
if (nuisance) scale = 1.-pred.vals[j][k];
|
||||
for (class = 0; class < classes; ++class){
|
||||
int ci = k+classes+background+nuisance;
|
||||
float y = (r + pred.vals[j][ci + 0])/7.;
|
||||
float x = (c + pred.vals[j][ci + 1])/7.;
|
||||
float h = pred.vals[j][ci + 2];
|
||||
float w = pred.vals[j][ci + 3];
|
||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
|
||||
float left = pred.vals[j][ci + 0];
|
||||
float right = pred.vals[j][ci + 1];
|
||||
float top = pred.vals[j][ci + 2];
|
||||
float bot = pred.vals[j][ci + 3];
|
||||
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], left, right, top, bot);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user