add CMakeLists.txt

This commit is contained in:
caesar 2020-04-09 11:21:54 +08:00
parent 61c9d02ec4
commit ae2b0a7679
2 changed files with 210 additions and 125 deletions

92
CMakeLists.txt Normal file
View File

@ -0,0 +1,92 @@
CMAKE_MINIMUM_REQUIRED(VERSION 3.10)
PROJECT(darknet)
# C++CUDA
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC -std=c++11")
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -fPIC")
SET(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};-gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52];-std=c++11;)
#
include_directories(
./src
./include
)
#
link_directories(/usr/lib
/usr/local/lib)
# cmakenvcc西
set(darknet_lib libDarkNet)
option(BUILD_SHARED_LIBS "BUILD_SHARED_LIBS" ON)
if (BUILD_SHARED_LIBS)
set(darknet_LIB_TYPE SHARED)
else ()
set(darknet_LIB_TYPE STATIC)
endif ()
FILE(GLOB C_SrcSource "src/*.c")
list(FILTER C_SrcSource EXCLUDE REGEX ".*compare.c")
FILE(GLOB CU_SrcSource "src/*.cu")
option(ENABLE_OPENCV "option for OpenCV" OFF)
if (ENABLE_OPENCV)
find_package(OpenCV)
if (OpenCV_FOUND)
set(ENABLE_OPENCV ON)
add_definitions(-DENABLE_OPENCV -DOPENCV)
message(STATUS "OpenCV library status:")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " libraries: ${OpenCV_LIBRARIES}")
message(STATUS " lib_dir: ${OpenCV_LIB_DIR}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
link_directories(${OpenCV_DIR})
include_directories(
${OpenCV_INCLUDE_DIRS}
)
endif ()
endif ()
find_package(CUDA)
option(ENABLE_CUDA "option for CUDA" OFF)
if (ENABLE_CUDA AND CUDA_FOUND)
add_definitions(-DENABLE_CUDA -DCUDNN -DGPU)
include_directories(${CUDA_INCLUDE_DIRS})
if ("${Tools_Other_Project}" STREQUAL "ON")
message(STATUS "CUDA library status:")
message(STATUS " ${CUDA_VERSION}")
message(STATUS " libraries: ${CUDA_LIBS}")
message(STATUS " libraries: ${CUDA_LIBRARIES}")
message(STATUS " lib_dir: ${CUDA_LIBRARY_DIRS}")
message(STATUS " include path: ${CUDA_INCLUDE_DIRS}")
endif ()
include_directories(${CUDA_INCLUDE_DIRS})
link_directories(${CUDA_LIBRARY_DIRS})
cuda_add_library(${darknet_lib} ${darknet_LIB_TYPE}
${C_SrcSource}
${CU_SrcSource}
)
#
target_link_libraries(${darknet_lib} ${CUDA_LIBRARIES} ${OpenCV_LIBRARIES})
else ()
add_library(${darknet_lib} ${darknet_LIB_TYPE}
${C_SrcSource}
)
#
target_link_libraries(${darknet_lib} ${OpenCV_LIBRARIES})
endif ()
FILE(GLOB example_SrcSource "examples/*.c")
list(FILTER example_SrcSource EXCLUDE REGEX ".*attention.c")
list(FILTER example_SrcSource EXCLUDE REGEX ".*dice.c")
list(FILTER example_SrcSource EXCLUDE REGEX ".*swag.c")
list(FILTER example_SrcSource EXCLUDE REGEX ".*writing.c")
list(FILTER example_SrcSource EXCLUDE REGEX ".*voxel.c")
add_executable(darknet ${example_SrcSource})
target_link_libraries(darknet ${darknet_lib})

View File

@ -7,21 +7,20 @@
#include "parser.h"
#include "box.h"
void train_compare(char *cfgfile, char *weightfile)
{
void train_compare(char *cfgfile, char *weightfile) {
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
char *backup_directory = "/home/pjreddie/backup/";
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
network *net = parse_network_cfg(cfgfile);
if (weightfile) {
load_weights(net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = 1024;
list *plist = get_paths("data/compare.train.list");
char **paths = (char **)list_to_array(plist);
char **paths = (char **) list_to_array(plist);
int N = plist->size;
printf("%d\n", N);
clock_t time;
@ -30,8 +29,8 @@ void train_compare(char *cfgfile, char *weightfile)
data buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.classes = 20;
args.n = imgs;
@ -40,70 +39,70 @@ void train_compare(char *cfgfile, char *weightfile)
args.type = COMPARE_DATA;
load_thread = load_data_in_thread(args);
int epoch = *net.seen/N;
int epoch = *(net->seen) / N;
int i = 0;
while(1){
while (1) {
++i;
time=clock();
time = clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
printf("Loaded: %lf seconds\n", sec(clock() - time));
time = clock();
float loss = train_network(net, train);
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
if (avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss * .9 + loss * .1;
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float) *net->seen / N, loss, avg_loss,
sec(clock() - time), *net->seen);
free_data(train);
if(i%100 == 0){
if (i % 100 == 0) {
char buff[256];
sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i);
sprintf(buff, "%s/%s_%d_minor_%d.weights", backup_directory, base, epoch, i);
save_weights(net, buff);
}
if(*net.seen/N > epoch){
epoch = *net.seen/N;
if (*net->seen / N > epoch) {
epoch = *net->seen / N;
i = 0;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, epoch);
save_weights(net, buff);
if(epoch%22 == 0) net.learning_rate *= .1;
if (epoch % 22 == 0) net->learning_rate *= .1;
}
}
pthread_join(load_thread, 0);
free_data(buffer);
free_network(net);
free_ptrs((void**)paths, plist->size);
free_ptrs((void **) paths, plist->size);
free_list(plist);
free(base);
}
void validate_compare(char *filename, char *weightfile)
{
void validate_compare(char *filename, char *weightfile) {
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
network *net = parse_network_cfg(filename);
if (weightfile) {
load_weights(net, weightfile);
}
srand(time(0));
list *plist = get_paths("data/compare.val.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
int N = plist->size/2;
char **paths = (char **) list_to_array(plist);
int N = plist->size / 2;
free_list(plist);
clock_t time;
int correct = 0;
int total = 0;
int splits = 10;
int num = (i+1)*N/splits - i*N/splits;
int num = (i + 1) * N / splits - i * N / splits;
data val, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.classes = 20;
args.n = num;
@ -112,35 +111,36 @@ void validate_compare(char *filename, char *weightfile)
args.type = COMPARE_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(i = 1; i <= splits; ++i){
time=clock();
for (i = 1; i <= splits; ++i) {
time = clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*N/splits - i*N/splits;
char **part = paths+(i*N/splits);
if(i != splits){
num = (i + 1) * N / splits - i * N / splits;
char **part = paths + (i * N / splits);
if (i != splits) {
args.paths = part;
load_thread = load_data_in_thread(args);
}
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock() - time));
time=clock();
time = clock();
matrix pred = network_predict_data(net, val);
int j,k;
for(j = 0; j < val.y.rows; ++j){
for(k = 0; k < 20; ++k){
if(val.y.vals[j][k*2] != val.y.vals[j][k*2+1]){
int j, k;
for (j = 0; j < val.y.rows; ++j) {
for (k = 0; k < 20; ++k) {
if (val.y.vals[j][k * 2] != val.y.vals[j][k * 2 + 1]) {
++total;
if((val.y.vals[j][k*2] < val.y.vals[j][k*2+1]) == (pred.vals[j][k*2] < pred.vals[j][k*2+1])){
if ((val.y.vals[j][k * 2] < val.y.vals[j][k * 2 + 1]) ==
(pred.vals[j][k * 2] < pred.vals[j][k * 2 + 1])) {
++correct;
}
}
}
}
free_matrix(pred);
printf("%d: Acc: %f, %lf seconds, %d images\n", i, (float)correct/total, sec(clock()-time), val.X.rows);
printf("%d: Acc: %f, %lf seconds, %d images\n", i, (float) correct / total, sec(clock() - time), val.X.rows);
free_data(val);
}
}
@ -157,182 +157,175 @@ typedef struct {
int total_compares = 0;
int current_class = 0;
int elo_comparator(const void*a, const void *b)
{
sortable_bbox box1 = *(sortable_bbox*)a;
sortable_bbox box2 = *(sortable_bbox*)b;
if(box1.elos[current_class] == box2.elos[current_class]) return 0;
if(box1.elos[current_class] > box2.elos[current_class]) return -1;
int elo_comparator(const void *a, const void *b) {
sortable_bbox box1 = *(sortable_bbox *) a;
sortable_bbox box2 = *(sortable_bbox *) b;
if (box1.elos[current_class] == box2.elos[current_class]) return 0;
if (box1.elos[current_class] > box2.elos[current_class]) return -1;
return 1;
}
int bbox_comparator(const void *a, const void *b)
{
int bbox_comparator(const void *a, const void *b) {
++total_compares;
sortable_bbox box1 = *(sortable_bbox*)a;
sortable_bbox box2 = *(sortable_bbox*)b;
sortable_bbox box1 = *(sortable_bbox *) a;
sortable_bbox box2 = *(sortable_bbox *) b;
network net = box1.net;
int class = box1.class;
int class = box1.class;
image im1 = load_image_color(box1.filename, net.w, net.h);
image im2 = load_image_color(box2.filename, net.w, net.h);
float *X = calloc(net.w*net.h*net.c, sizeof(float));
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
float *predictions = network_predict(net, X);
float *X = calloc(net.w * net.h * net.c, sizeof(float));
memcpy(X, im1.data, im1.w * im1.h * im1.c * sizeof(float));
memcpy(X + im1.w * im1.h * im1.c, im2.data, im2.w * im2.h * im2.c * sizeof(float));
float *predictions = network_predict(&net, X);
free_image(im1);
free_image(im2);
free(X);
if (predictions[class*2] > predictions[class*2+1]){
if (predictions[class * 2] > predictions[class * 2 + 1]) {
return 1;
}
return -1;
}
void bbox_update(sortable_bbox *a, sortable_bbox *b, int class, int result)
{
void bbox_update(sortable_bbox *a, sortable_bbox *b, int class, int result) {
int k = 32;
float EA = 1./(1+pow(10, (b->elos[class] - a->elos[class])/400.));
float EB = 1./(1+pow(10, (a->elos[class] - b->elos[class])/400.));
float EA = 1. / (1 + pow(10, (b->elos[class] - a->elos[class]) / 400.));
float EB = 1. / (1 + pow(10, (a->elos[class] - b->elos[class]) / 400.));
float SA = result ? 1 : 0;
float SB = result ? 0 : 1;
a->elos[class] += k*(SA - EA);
b->elos[class] += k*(SB - EB);
a->elos[class] += k * (SA - EA);
b->elos[class] += k * (SB - EB);
}
void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class)
{
void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class) {
image im1 = load_image_color(a->filename, net.w, net.h);
image im2 = load_image_color(b->filename, net.w, net.h);
float *X = calloc(net.w*net.h*net.c, sizeof(float));
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float));
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float));
float *predictions = network_predict(net, X);
float *X = calloc(net.w * net.h * net.c, sizeof(float));
memcpy(X, im1.data, im1.w * im1.h * im1.c * sizeof(float));
memcpy(X + im1.w * im1.h * im1.c, im2.data, im2.w * im2.h * im2.c * sizeof(float));
float *predictions = network_predict(&net, X);
++total_compares;
int i;
for(i = 0; i < classes; ++i){
if(class < 0 || class == i){
int result = predictions[i*2] > predictions[i*2+1];
for (i = 0; i < classes; ++i) {
if (class < 0 || class == i) {
int result = predictions[i * 2] > predictions[i * 2 + 1];
bbox_update(a, b, i, result);
}
}
free_image(im1);
free_image(im2);
free(X);
}
void SortMaster3000(char *filename, char *weightfile)
{
void SortMaster3000(char *filename, char *weightfile) {
int i = 0;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
network *net = parse_network_cfg(filename);
if (weightfile) {
load_weights(net, weightfile);
}
srand(time(0));
set_batch_network(&net, 1);
set_batch_network(net, 1);
list *plist = get_paths("data/compare.sort.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
char **paths = (char **) list_to_array(plist);
int N = plist->size;
free_list(plist);
sortable_bbox *boxes = calloc(N, sizeof(sortable_bbox));
printf("Sorting %d boxes...\n", N);
for(i = 0; i < N; ++i){
for (i = 0; i < N; ++i) {
boxes[i].filename = paths[i];
boxes[i].net = net;
boxes[i].net = *net;
boxes[i].class = 7;
boxes[i].elo = 1500;
}
clock_t time=clock();
clock_t time = clock();
qsort(boxes, N, sizeof(sortable_bbox), bbox_comparator);
for(i = 0; i < N; ++i){
for (i = 0; i < N; ++i) {
printf("%s\n", boxes[i].filename);
}
printf("Sorted in %d compares, %f secs\n", total_compares, sec(clock()-time));
printf("Sorted in %d compares, %f secs\n", total_compares, sec(clock() - time));
}
void BattleRoyaleWithCheese(char *filename, char *weightfile)
{
void BattleRoyaleWithCheese(char *filename, char *weightfile) {
int classes = 20;
int i,j;
network net = parse_network_cfg(filename);
if(weightfile){
load_weights(&net, weightfile);
int i, j;
network *net = parse_network_cfg(filename);
if (weightfile) {
load_weights(net, weightfile);
}
srand(time(0));
set_batch_network(&net, 1);
set_batch_network(net, 1);
list *plist = get_paths("data/compare.sort.list");
//list *plist = get_paths("data/compare.small.list");
//list *plist = get_paths("data/compare.cat.list");
//list *plist = get_paths("data/compare.val.old");
char **paths = (char **)list_to_array(plist);
char **paths = (char **) list_to_array(plist);
int N = plist->size;
int total = N;
free_list(plist);
sortable_bbox *boxes = calloc(N, sizeof(sortable_bbox));
printf("Battling %d boxes...\n", N);
for(i = 0; i < N; ++i){
for (i = 0; i < N; ++i) {
boxes[i].filename = paths[i];
boxes[i].net = net;
boxes[i].net = *net;
boxes[i].classes = classes;
boxes[i].elos = calloc(classes, sizeof(float));;
for(j = 0; j < classes; ++j){
for (j = 0; j < classes; ++j) {
boxes[i].elos[j] = 1500;
}
}
int round;
clock_t time=clock();
for(round = 1; round <= 4; ++round){
clock_t round_time=clock();
clock_t time = clock();
for (round = 1; round <= 4; ++round) {
clock_t round_time = clock();
printf("Round: %d\n", round);
shuffle(boxes, N, sizeof(sortable_bbox));
for(i = 0; i < N/2; ++i){
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, -1);
for (i = 0; i < N / 2; ++i) {
bbox_fight(*net, boxes + i * 2, boxes + i * 2 + 1, classes, -1);
}
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
printf("Round: %f secs, %d remaining\n", sec(clock() - round_time), N);
}
int class;
for (class = 0; class < classes; ++class){
for (class = 0; class < classes; ++class) {
N = total;
current_class = class;
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
N /= 2;
for(round = 1; round <= 100; ++round){
clock_t round_time=clock();
for (round = 1; round <= 100; ++round) {
clock_t round_time = clock();
printf("Round: %d\n", round);
sorta_shuffle(boxes, N, sizeof(sortable_bbox), 10);
for(i = 0; i < N/2; ++i){
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class);
for (i = 0; i < N / 2; ++i) {
bbox_fight(*net, boxes + i * 2, boxes + i * 2 + 1, classes, class);
}
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator);
if(round <= 20) N = (N*9/10)/2*2;
if (round <= 20) N = (N * 9 / 10) / 2 * 2;
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N);
printf("Round: %f secs, %d remaining\n", sec(clock() - round_time), N);
}
char buff[256];
sprintf(buff, "results/battle_%d.log", class);
FILE *outfp = fopen(buff, "w");
for(i = 0; i < N; ++i){
for (i = 0; i < N; ++i) {
fprintf(outfp, "%s %f\n", boxes[i].filename, boxes[i].elos[class]);
}
fclose(outfp);
}
printf("Tournament in %d compares, %f secs\n", total_compares, sec(clock()-time));
printf("Tournament in %d compares, %f secs\n", total_compares, sec(clock() - time));
}
void run_compare(int argc, char **argv)
{
if(argc < 4){
void run_compare(int argc, char **argv) {
if (argc < 4) {
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
@ -340,10 +333,10 @@ void run_compare(int argc, char **argv)
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
//char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "train")) train_compare(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_compare(cfg, weights);
else if(0==strcmp(argv[2], "sort")) SortMaster3000(cfg, weights);
else if(0==strcmp(argv[2], "battle")) BattleRoyaleWithCheese(cfg, weights);
if (0 == strcmp(argv[2], "train")) train_compare(cfg, weights);
else if (0 == strcmp(argv[2], "valid")) validate_compare(cfg, weights);
else if (0 == strcmp(argv[2], "sort")) SortMaster3000(cfg, weights);
else if (0 == strcmp(argv[2], "battle")) BattleRoyaleWithCheese(cfg, weights);
/*
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);